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INTRODUCTION

A. General and Historical

Vulcanized natural rubber is characterized by an ability to undergo

large reversible deforrnations. In the 19th Century, Gouth III, Kelvin

f2J and Joule [3. studied the peculiar thermodynamic effects which acom-

panted deformation, e. g. , the reversible heat evolution on stretching

and the positive temperature coefficient of the force necessary to maintain

a given elongation. These properties, as we know now are not unique to

natural rubber, but are common to all crosslinked elastomers.

In the classical theory of elasticity, applicable to small strains, the

behavior of an isotropic slasLic body under any type of deformation can

be described completely if two material constants are known, one related

to the response to shear, the other to volume change. However, since this

theory is based upon the limiting condition of Hooke's law, it is not applicable

to rubber-like materials capable of large elastic deformations. A continuum

theory, developed in particular by Pivlin U41 r-eks to establish in general

terms the symmetry relation which governs thw behavior of elastic materials

under different types of deformation. By comparing the resulting general

relation with the experimental stress-strain behavior, one hopes to deduce

the equivalent to Hooke's law, in terms of a finite number of material constants.

One might hope also to deduce such a law from our molecular picture

of rubbers as an entangled mass of randomly coiled molecules, i. e.

deriving energetics from a statistical-mechanical point of view. The compli-

cations in this approach are that the picture of rubbers as above is really that

of a very complex viscoelastic liquid and that the approximations used tc

derive an equation of state on a molecular basis must be severe.

It is, of course, also pussible to proceed empirically to find an applicable

form of Hooke's law by starting from phenomenological observations and

casting them into functional-analytical form by observing the necessary
conditions of thermodynamics and mechanics. This leads to workable equations,

without, however, permitting a mechanistic understanding.
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B. Treatment of Network Elasticity in the Gaussian Approximation

By 1932 Meyer, Susich and Valko [51 , Mark and Guth [61 and Kuhn [71

had suggested that the elastic retractive force of rubbers ari ses from the

decrease of entropy associated with the smaller number of conformations

available when this network of chains is deformed by stretching. The re-

tractive force of a single Gaussian chain can he very easily derived r6,

hence most of our present theoretical knowledge concerning rubber-lice

elasticity tteATL-1 from treatments invoking the Gaussian chain approximation

and extending it to the entire networks. Applying this approximation simplifies

obtaining the changes in conformational entropy of the network< chains, but

leaves a number of difficulties associa-,d with the "liquid-llte" nature /,

bulk elastomers unresolved, such as the volume requirements of the molecules

themselves, the volume dilation due to the isotropic component of the applied

tension, the free energy change accompanying this volume change, and other

possible free energy changes which might arise from a change of shape at

constant volume. Many of the early treatments assumed simply that all

these effects could be neglected in comparison to the contribution from the

change in conformational entropy. Recent experimental work, however has

prompted a reexamination and modification of earlier theories [8, 91 •

The first step in the molecular theory of rubberlike elasticity is the

derivation of the statistical properties of a single chain. It is necessary to

know the free energy of the molecule quantitatively as a function of its end-

to-end distance r and the relation between a given distance and the force

necessary to maintain it . Because of the Brt;wnian motion of the chain, the

eq u i L i brium distance r must be considered to be an average value and the

same must be true for the end-to-end distance during the period of application

of1 a force f . Assuming true randomness of the sequential arrangement of

segments, the probability of a given end-to-end vector from r to r A dr in the

absence of an external force, W(r), can be approximated b/ the Gaussian

distribution function:

W(r) dr z (O/A'd)3 exp ( - R2 r 2 ) 4ffr 2 dr (1)
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where the parameter 8 has the value 3/ Zr 0 (ro is the mean-square

end-to-end distance of the polymer molecule unperturbed by volume effects).

The error incurrcd by using the Gauss an function in Equation (1) has been

found to be negligible provided r is less than one-half of the fully extended

chain length F 101 , The energetics are introduced by means of statistical

t her.nmodynr.rics, rallatlag W(r) and the Helmholtz free energy of a set of

chains. By differentiation with respect to r one arrives at f , the force

needed to maintain a specified vectorial length r:

f 3kT r / r 0 (2)

The steps of this derivation include considering that the entropy Of Z chAirn

will decrease upon stretching as the chain assumes various conformations

which are characterized by average greater values of r (the entropy must be

a maximum at the most aver age probable value of r) . From the function of

the Helmholtz free energy, A, in the form of the conformational integral, the

retractive force is derived as the tangent with respect to L as given by

Equation (2).

The second step in the theory consists in calculating the elastic free

energy, Ael' , of the network as a function of the macroscopic parameters

which characterize the deformation. The network can be considered as an

ensemble of chains, each "chain" now being that portion of an original

macromolecule which extend from one crosslink to the next. All these chains

together will determine the retractive force of the crosslinked sample, and

the behavior of this system is assumed to be the sum of the contributions of

v chains. Each chain, characterized by 72- in the undeformed state and

by r in the deformed state, contributes according to Equation (2). Since the

material is supposed to be initially isotropic, one assumes that the components

of the vectorial length of each chain are changed by the external deformation

in the same ratio as the corresponding dimensions of the sample. This in

known as an "affine" deformation. It is then possible to write the expression

for the retractive force in the case of a simple elongation as:
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V k T ri 2
-__* (x-l/x ) (3)

0

where v: number of chains between crosslinks, k: Boltzmann's constant,

Li : original length of sample, i" L/L 1 : elongation of sample, L:

length of deformed sample, and / "r is the so-called front factor, in

which r~i is the mean-square end-to-end distance in the undeformed isotropic

state of a network for all the chains having the same contour length, and

r tis the corresponding mean-square end-to-end distance for the undeformed

chains without crosslinks. Hence, the parameter (72 /1- ) / represents

the aeometrical m'ean of theAs teAr deformation existing in the undeformed

network relative to a state where the end-to-end distance for the set of chains

coincides with that for the chains unrestricted by the intermolecular links.

For the purpose of this study it will be helpful to reiterate some of the

more important assumptions and approximations used in the various derivations:

1. The v chains of the network are long enough (the degree of crosslinking

not excessive) and volume effects negligible in order to assure the

validity of the Gaussian distribution.

2. The initial macromolecules are of very high molecular weight in

order to assure a negligible percentage of free ends.

3. The contributions by the i.hains to the total retractive force are

additive.

4. The deformation of the chains must be af'ine to the deformation of the

sample, which takes place at constant volume.

As stated these approxim&tions are rather restrictive and tend to over-

simplify many features.

Recently, the consequences of one of the major assumptions underlying

the simple Gaussian treatment - namely that the chains are volumeless and

do not hinder each other - have been reappraised [111. Taking the volume

of the chains into account effects the conformadonai entropy of the network.
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In the unstrained state, the presence of intersegmental obstruction serves

only to modify the effective step length of the Brownian motion but does not

affect the form of the distribution function. However, when the chains Are

stretched, the medium is no longer isotropic and the end-to-end distribution

for a particular 61h-l:i becomes affected by its chain volume. Jackson, Shen

and McQuarrie IDl ] take into account the change of conformatona.1 entropy by

intermolecular obstruction by modifying the end-to-end distribution function

in what they call a self-consistent way. If the usual "kinetic-theory" expression

can be represented by:

f prop (X- )X (4)

then the equation of state for rubber elasticity of these authors can be

represented by:

f prop. (f.- -) - (2), -- 1 ) 4- * (5)
3M(l - fsa)

where f and L have the same meanings as in the previous expression, but

where f. is the fraction of space occupied by polymer molecules, and M is

the number of equivalent statistical chain segments. Plotting f / X .- X)

as a function of (2X 2 4- 1/)J should give a linear relationship with a constant

slope. This was confirmed by using Roe and Krigbaum's data for Viton A [181

Taking a usual value of M : 100, fS , the fractional occupied space turned

out to be 0. 94 which appears to be reasonable. The authors conclude that

"One can at least assert that the volume-exclusion of network chains accounts

for part of the C 2 term of the Mooney-Rivlin equation. Other effects, such

as chain entanglements, network connectivity, and nonequilibrium states may

possibly be the other contributing factors"
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C. Thermodvnamics of Rubber Elasticity

Considering a reversible process, application of the first and second
laws of thermodynamics gives

dE : T dS 4- dW (6)

where E is the internal energy, S the entropy, T the absolute temperature

and W is the work done by the surroundings on the system. If P is the

external pressure, V the volume and f the force of extension, then

dW = fdL -p uV (7) -

Writing the first law

dE " T dS 4-fdL - p dV (8)

and introducing Gibb's free energy, F : H - TIS with H - E 4- pV

dF " dE 4-p dV 4- V d; - TdS - SdT (9)

dF - SdT 4- V dp 4. fdL (10)

or (•F /L) f (II)
p,T

From F :H - TS,

(• F fL) (-if / L) - T(ýS / L) (12)
p, T p, T p, T

and equating Equations (II) and (12),

f (• H/ L) - T(ýSf•,L) (13)
p,T p.T
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Equatling further the second partial derivatives of F with respect to T and L,

( f/IT) - (;•S/PL) (14)
p.L pL

we obtain the thermodynamic equation of state of the rubber,

f - (AH/AL) -T- T(WF/ ?T) (15)
pT p,L.

These quantities are all at constant pressure and temrperature which

correspondis to most experimental conditions. Howaver. the quantt"tI' of

real interest are the partial differential expressions at constant volume and

temperature. At constant pressure the positive change in volume of the

rubber, referred to as dilation or dilatation(increased molecular separations)

gives rise to a change in enthalpy. This change in addition to that of the

entropy presents a condition precluded byconstant volume.

To obtain the equation of state at constant volume and temperature,

again the Helmholtz free energy in applied

A : E - TS (16)

A derivation analogous to the above, and remembering that

T(A f/aT) : - T(NS/PL) (17)
V, L V, L

leads then to:

f : (E/L) 4 T/T(7f/ T) (18)
V, T V, L

The problem can be reformulated by dividing the total retractive force,

f into the two components

f = fe "/ fs8 (19)
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where

'la:reaLractive force due to chnzge in internal energy,
e

f retractive force due to change in entropy
U

Past authors have frequently neglected the energy contribution to the

retractive force ri2, 131at moderate strains. But later work has shown

that f /f can be an appreciable fraction. For an ideal rubber, for which

the internal energy does not depend upon the elongation r/ri of the chains,

the force f is proportional to the absolute temperature T. However, if

the internal energy of the chains depends upon r, then not only r i

but even ro will depend upon the temperature and the force f will no longer

be strictly proportional to T.

Having stated that

f fe T- T(V /aTVL (20)

we can write

ft f -T(;Y/)T)V, L (

or

f - T2  ( [f/T(2

T V,L Tz,

from which .me can derive that

e - T (n[f/T

f T V, L (23)
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Previously we found that

f VkT

Li

0

-1

or f/T - f un r-nt ( i

and therefore, with equation (14), we find:

fe/f -T ( inCf/T]) T ( ln 0'o t

BT V, L 2 T V, L

An important advantage of the preceding derivation is that the theory

of rubber elasticity offers the possibility of interpreting the energetic

component fe in terms of the molecular properties of the chain.

An important correlation can now be established between the elastic

behavior of a crosslinked amorphous polymer and the properties of the

same polymer in dilute solution. At the theta-temperature, the intrinsic

viscosity of a polymer having a molecular weight of M can be expressed

as [271

-iM 3/2 I 1/2 (25)
6 0

where* is a constant independent of temperature. Consequently

2/3 ( 1n[19 / B T) dln r0 /dt (26)

and from Equations (24) and (26)

fe/f = 2/3 - T Mnr, / 8T (27)
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This equation establishes the interesting possibility to determine the

ratio of the energetic to the entropie contribution of rubber elasticity

from the variation of the intrinsic viscosity for various solutions of

varying theta temperatures or, vice versa, the Latter from force-temp-

erature measurements.

The calculation of f/ If via stress-strain measurements necessitates

measurements at constant volume which are difficult to perform. However

differentiation and rearrangement of Equation (24), gives r 14, 15)

(in [If/T1 /I T) - (d In r /dT) -3 0V( - 1) (28)p,L "0

and hence

18 In [f/T1 3
f If : - T(--) - 3 T/0. -I) (29)

0 p,L

where &is the linear expansion coefficient of the polymer.

The sign off. will depend upon the sign of d in rZ / dT, where the

dependence of r upon temperature is determined by0 the potential associated

with internal rotation. ":or a Long chain made up of bonds with uncorrelated

rotations which are hindered according to one or another type potentials,

the sign of d in r- / dT is easily predicted. If the potential of internat

bond rotation for a given polymer is such that the deepest minimum is near

the transposition, then, r-0 will decrease by increasing temperature, f0 e

will be negative and the stretching process is favored by a decrease of

internal energy or by Lowering T. If however the rotational minimum is

far from the transconformation, rt0 may increase with increasing temp-

erature, since many of the chains which were in conforarntions become

longer by increasing the vibrational energy and going to transconformations.

Then f will be positive and the stretching process will be opposed by an
0

increase in the internal energy. Only in cases where all the possible minima

were isoenergetic wil- r-Z be temperature independent and f be equal to zero.
o 0

A decrease of entropy will always oppose the stretching process.
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There are several differnat methods of calcul ating fe/f for a given

specimen. If the measurememts can be carried out at constant volume

then, by application of Equation (17), it would give us an immediate measure

of f.. However direct measurements remain difficult, only a few data exist

r91 . If the change in volume were known an a function of elongation, one

could calculate fe via Equation (17), by applying :

(Uf/) T) VL (NfPAT) pL- (wV/L) p.T(AV/ '-T ) p L (30)(NV/V)Tp, L (0

Unfortunately though the cubic thermal expansion coefficient((NV/[T)p, L

and the compressibility ( (WV/'P)T, L ) are readily measured as

long as the rubbers are isotropic the change of volume upon elongation

is very small (of the order of 10" cc/cc) and quite difficult to measure.

Holt and McPherson r161, and more recently Hewitt and Anthony [171

reported the only available figures in the field.

The calculation based on Equation (W9) supposes that the rubber network

obeys Gaussian statistics. Rearranging Equation (29) gives us

3
fell -I1 - T( ?f) - 3 & T/( -1X ) (31)r" ' -s'r" p, L

The relationship is exact but is based upon the Gaussian network theory. In

contrast, the presence of nonvanishing values of C2 in the literature indicates

considerable deviation of the real network from the simple Gaussian theory,

and therefore Equation (31) cannot be strictly justified. Accepting, however,

that C arises from mostly failure to attain equilibrium conditions, then only

C1 in Mooney's equation represents an equilibrium property, with the rubber
obeying the Gaussian theory

f - 2C, (),-x -) (32)

from which

fe/f- I - T/C 1 ( 1CI/;ýT) p 4- T (33)
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0.3

0.2

0.

OLe-0]

2 3 4 X

1, ig. 1, Ref [8] Variation with elongation of the fractional

contribution of the internal energy to the total tension
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\ LaOctoprene
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X

Fig. 2, Ref 181 : Measured values of fe/f for various

polymers shown as a function of elongation
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Also in this case the values of fe/f calculated by application of (31) or

(33) should be equal. Checking with li terature data, shows that this is not

so r8l(Fig. 1 ). Similarity, forcing the data to comply to Equation (32) by

setting C : 0, should show fe/f to be independent of X., which in nota
the case. Even more disturbing is the fact that the approximations employed

in the Gaussian treatment should become more exact as ), approaches 1, yet

it is just in that region that fe/f varies the most.

Looking closely at fe/f, rne , (Fig. 2), as a function of , one can

see that the contribution of internal energy is real, is c¢•en quite large, and

can be positive or negative. The strong dependence of fe/f on X runs counter

to the prediction from the Gaussian theory while the drop in fe/f at large

observed for natural rubber, could be associated with stress induced

crystallization by Smith, Greene and Ciferri r191 , the rapid variation of

feaf at very low ) is surprising since, from the nature of the approximations

employed, the Gaussian theory would be expected then to be obeyed more

exactly. A decrease in fe/f , which was observed with cis-i, 4 polybutadiene

S20) , and similar trends can be detected in other systems, appears

to be a general phenomenon. There is as yet no satisfactory explanation from

a molecular point of view. Most probably, this phenomenon is associated

the value of C 2 . Further, the sign of C 2 seems to be always positive which

appears to correlate with the fact that fe/f always decreases withX , ir-

respective of whether fe/f is positive or negative. Splitting the C 2 term

into its own entropic and energetic components shows that about 50% of the

magnitude of C 2 arises from energy effects in natural rubber E8l . Finally,

C contributes proportionately more to the total stress at low). , showing

a-, in that the deviation from the Gaussian theory is more pronounced.
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D. Phenomenological approach to Rubber Elasticity

For this approach one must first understand the nature of the concept

of the stored energy function W. which is defined as a function of the strain

parameter > , and of the thermodynamic parameters specifying the enviroment,

such as the temperatur e T or the pressure p. The function W as a form of

free energy, represents the total amount of work stored elastically in the

body in the process of deforming it into the state of strain represented by

X. W, is furthermore a function of state depending only on the initial and

final free energy levels. Theories based on W are, therefore, concerned

with equilibria analogous to classical thermodynamics, and complications must

arise from non-equilibrium processes when comparing experimental data

with the theory.

Since the stored energy does not depend on pure rotation of a body, W is

a function of a symmetric matrix, X I , representing a pure distortion of the

shape. A suitable rotation of the coordinate axes reduces this matrix to a

diagonal form, whose three elements are the principal extension ratios

(Xi) = N ,X 2 , X3 ) as defined earlier. If the body, as assumed, in

isotropic in the undeforrned state. we may choose as the independent variables

for W some functions of the elements of which are invariant with arotation

of the coordiiate axes. There are a large number of conceivable 0train

invariants from which sets of three must be selected which are mtntually in-

dependent. The simplest choice of such a set is given by

2 4 X2 4" X 3 (34)

I- X ./4- X 1 X 3  4 X , (35)
2

3 X 2 X (36)
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which are even, symmetric, functions of %. I I , and X. . Physically,1 2 3
the third invariant 13 is related to the volume deformation by

13 : (V/V) z (3V)
0

where V and V are the volumne, of the body before and after deforrmatlon

respectively r4.

The stored energy W as a function of the strain invariants can be ex-

pressed in terins of a power series [4:

W : I;j Cijk (I - 3)i (I - -3) V 3 1)
,.,k = 0

(38)

where the coefficients CIjk are functions of T and p only. An approximation

to W can be obtained by retaining only a finite number of low order terms,

If only the first term is retained, we have

W I clOo (-- (39)

which is an expression equivalent to that obtained from the statistical
theory of rubbers when approximating the rubber chains by Gaussian coils.

If the second term of Equation (38) is also retained,

w : Coo(I(- 3) 4 Colo (I - 3) (40)

which is identical with the Mooney-Rivlin function for incompressible rubbers

r4i.

In the case of simple elongation, and assuming incornpressib•ity:

X :X " L/Lo (41)
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where L and L are the lengths of the material in the original and stretched

state, respectively. Deformation in the lateral direction to then given by

1/2

X I .X 3 : (v/X vo) 1/(42)

The principal str•mesi (force acting in the direction of the principal

@train A i . and measured per unit area of ths deformad body), are obtained

from W by:

ti i1 1 3 1/2 ('W/Vo- p (43)

Replacing values for ) 2 and. 3 # in Equation (43) . solving for p and

substituting for the value of p in the expression for t, obtained from Equation

(43) , we have that

A• W. 'A 1
f 2 . - z -- CX - (44)

A 2

£ is now the force of elongation per unit cross-sectional area of undeformed

material [41 .

When the stored energy function is reduced to the first term Equation

(39) becomes:

f ZC 100( ()(- LV1)32 (45)

comparison of Equation (45) with the results of the statistical theory of

Gaussian networks then indicates that Rivlin's constant C 1 0 0 is given by

2/3
Co0 1 ... vkT ( _.o.) (46)

2 V

where v it the number of network chains in the specimen, k is Boltzmann's

constant, T is the absolute temperature, and V,, is the reference rolume

independent of pressure r18"
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120-
tl n t3  biaxial

(Kg./cm2 ) 80 - Ile
1shear

elongation40-

10 2 20
x3

Fig. 3 , Ref r18] : Biaxial stretching. shear and simple

elongation (dashed line represents the prediction of

Gaussian theory)
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Treloar r121 determined the stress-strain relationship for vulcanized

natural rubber in simple elongation, uniform biaxial elongation and for

strip biaxial stretch, Qualitatively he could recognize two types of deviation

from the prediction of the Gaussian theory which requires that ý W/;ý I2 - 0,

( Fig. 3). P, irstly, at large strains, the stresses tend to increase much more
rapidly than expected from the theory. Secondly, even at moderate strains

the curves derived from different types of strain do not coincide with each

other , which indicates that • W/ 12 : C? A 0. At large strain, the be-

havior could be expressed only by a large number of terms with arbitrary

coefficients for Equation (39).

On the other hand, the upturn in stress at large strains has been suc-

cessfully explained in terms of the finite extensibility of the network chains

rI1z . In this region of strain, where an appreciable proportion of the chains

becomes highly exLended, the Gaussian statistical treatment is no longer valid.

We quoted earlier that departures from Gaussian statistics first become

important when the vector length of the chain is between one-third to one-

half of its fully extended length. r2 1o. In the case of a network of chains, in

which the chain length is related inversely to the degree of cross-linking, this
implies that the Gaussian theory becomes increasingly inadequate as the degree

of cross-linking is increased. At the limit a , "non-Gaussian" theory becomes

essential even under the smallest strains.
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E. The Problem of C
2

Behavior at moderate strain strongly suggests that the Mooney-Rivlin

function. Equation (44) , is a better approximation than the single-term

Gaussian function, Equation (46) . When one is interested in the stress-

strain relationship in simple elongation only it is widely recognized that

the Mooney-Rivlin function is a very good representation of the data. This

holds not only for natural rubber, but also for a wide variety of rubberlike

materials such as crosslinked silicones and polyethylene, polyisobutylene,

and Vitonfluoro elastomers.

No generally acceptable molecular interpretation of the C term has2
emerged yet. Gaussian statistics predict a zero value of C? , but most

experimental work shows the existence of a C2 term as discussed before.

As will be shown later, extremdy precise measurements are needed in order

to determine the value of C 2 at small strains.

Values of C may be of the same order of magnitude as C In a few2 1

cases C 2 is grr-ater than C 1 , but there are many cases reported where C

is very small. There is no clear cut rule by which one could predict the

magnitude of C2 from knowledge of the structure of the material. The situation

is different for the behavior of C1 which increases regularly with increasing

crosslink density and with increasing temperature, as follows fromthe

Gaussian theory. Adherence to the latter could, as stated earlier, require

that the C2 term goes to zero at low strains. Van der Hoff's [221 very

recent data tends to show that this might in fact be the case.

Experiments on swelling of vulcanized rubbers show that deviations from

the Gaussian theory become less noticeable with dilation [23, 24] 1. e. with

reduced rubber-rubber interactions. In the work of Gumbrell, Mullins, and

Rivlin r241 , the effect of various swelling agents on the stress-strain re-

lationship of natural rubber, butadiene -styrene, and butadiene-acrylonitrile

copolymers, showed that in al cases that the Mooney-Rivlin 2 term equation

was well obeyed and that, if the force per unit cross-sectional area of the

unswollen specimen is expressed as :

fU: (X-X ) (ZC 1 4- .2C1 A )/v 2 1/3(47)

(where V2 is the volume fraction of the rubber. ) C'1 , the equivalent of C
for the swollen network,

Nmmmm.
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becomes independent of v2, while the value of C'., the equt-va4ent of

C for the swollen network, decreases linearily with decreasing v , and be-

comes zt,'o atv 2" 0. 25 irrespective of the nature of the solvent. C' 2 can

therefore be represented by

C' CZ (4v - 1) (48)2 = 2

3

where C2 is the value of the constant for the unawollen rubber. Other workers

have essentially verified these results [251 with crosslinked networks of

silicone rubber, butyl rubber, and polymethyl methacrylate.

Another important observation was made by Cibrri and Flory, i. e. that

the magnitude of C2 can be influenced by the time scale of the measurements

[251 . Their samples exhibited considerable stress relaxation when held at

constant length and the apparent values of C 2 decreased by 10 to 40 percent

when the time of relaxation between successive elongations was increased

from 15 mins to 10 hours. A similar observation of the effect of time was

made by Kraus and Moczvgemba [261.

Thus the values of C 2 may, at least partly, be affected by failure to achieve

equilibrium conditions during stress-strain measurements or when insufficient

time is allowed for completion of stress relaxation. But as decay of stress in

stretched elastomers is often approximately linear with the logarithm of time

[24, 27, 281 , it is difficult to know when the criterion of equilibrium has been

adequately fulfilled. This led Ciferri and Flory [25] to suggest that under ideal

equilibrium conditions the values of C2 might be expected to become negligibly

small. Blatz and Ko [291 reported that for polyurethane rubbers which

exhibited no detectable relaxation, the value of C 2 was zero.

Other facts, however, lead one to suspect that the equilibrium value of

C. may not vanish. Swelling the samples with a solvent and then deswelling

them improves their approach to equilibrium 291 . When this technique was

used by Ciferri and Flory r251 in a butyl rubber vulcanizate, the value of 2C

was found to decrease to 0. 5 kg/cm2 from the value of 1. 20 kg/cmZ obtained

without the swelling and deswelling cycle, but did not become zero. Roe and

Krigbaum r 8, 301 studied vulcanizates of natural rubber and Viton floroelastomer

by allowing relaxation for at least 24 and 48 hr, ai.d yet the values of 2CZ
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obtained were 0. 88 and 2. 37 kg/cm 2 , respectively. These values of 2C2

are certainly not negligible.

Contradictory results are also reported on the relationship between the

magnitude of C2 and the crosslink density. Gumbrell, Mullins and Rivlin [241

prepared a series of sulfur vulcanisates of natural rubber with 2C - 2.0

kg/cm , although their values of 2C 1 ranged from 2. 0 to 6. 2 kg/cm • Kraus
and Mocuvgemba [ 261 show that when polybutadieno polymers of different

primary molecular weights were crosslinked with controlled amounts of sulfur

so as to give approximately the same value of C1 , the value of C2 depended

on the molecular weight of the original polymer. And Ciferri and Flory :251

noted that in the case of natural rubber, a specimen crosslinked by gamma

radiation to give the same value C1 : 2. 0 kg/cm2 as one crosslinked with
2sulfur with a 2CZ = 2. 0, exhibited a lower value of 2C ,namely, 1. 5 kg/cm

Consequently Krigbaurn and Roe 181urged the study of the effect of

structural differences on C . The distribution of network chain lengths could

for example be of some importance. A knowledge of the factors effecting C2

would help in correlating experimental results such as the energy component

of the jlastic force obtained by different workers from apparently identical

materials [31, 321 •

Few studies have been carried out on the temperature dependence of C2 .

When C2 was evaluated from stress-strain data at very short times apparent

values of C2 decreased with increasing temperature, reflecting a faster

approach to equilibrium at higher temperatures 128). Under conditions where

relaxation effects could be neglected, the temperature coefficients of C were

found to be positive for natural rubber [81 , silicone rubber r281 and nearly

zero for butyl rubber [281 . Roe and Krigbaumn [8, 30) analyzed stress-strain
data with respect to entropy and internal energy contributions to elastic force
and found that in the case of natural rubber it is the internal energy effects

which are largely responsible for the C2 term.

Blatz and Ko[291 working with polyurethane foam rubber containing 5016

air by volume, found that 2C 1 was practically negligible and that all of the

elastic force arose from the 2C 2 term. This finding is a good reminder that

the existence of the C2 term is real and that macroscopic as well as microscopic
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structural feature@ will determine tle relative importance of the C. term.
In view of the oversimplifications inherent in the statistical theory, one can

assume that all the structural features neglected there will come into play such

as volume effects, local chain packing or ordering, non-Gaussian segment

distribution, free chain ends, crosslink clustering, non equilibrium and

thermal effects, and others. In view of these complexities, and of the con-

tradictions so far encountered, an apriori deduction of C 2 seems rather hope-

team at this stage, and that efforts should be concentrated on careful measure-

ments of values of C 2 as a function of rubber structure.
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y Introduction to Dilatometry

Our knowledge of rubber behavior under simple elongation would

not be complete without an insight into the nature of the changes in volume

as a function of elongation and time. From a theoretical point of view, the

exact function of (NlL)T, p allows one to calculate directly the quantites

of thermodynamic interest without having to assume certain approximations

as has been the cue in previous studies. Following the change in volume

at a fixed strain level as a function of time, should permit also the study of

ordering or crystallization kinetics, since at higher levels of order the

density of the overall sample must increase. When volume changes have

been used to follow the crystallization quantitatively over a range of temp-

erature F331 , the final decrease in volume on crystallization was found to

lie between 2. 0 and 2. 7 percent. Experimentally, measurement of A V

accompanying elongation was first attempted by Holt and McPherson C 161,

who found no volume change for elongations up to 200%. These authors were

specifically interested in effects of crystallization and also worked with

filled samples.

At elongations higher than 200% they found that even after 3 or 4 weeks,

the volume of the stretched rubber decreased at an approximately uniform

rate with the logarithm of time. These decreases were the greater, the

higher the elongation, the lower the temperature or the longer the time

the rubber was kept stretched. These observations were obviously related

to the kinetics of crystallization. In later work [341, Gent followed the

crystallization of the sample by measuring decreases in volume and re-

laxation of the stress. He found that the degree of crystallization as

measured by the dilatometer, was proportional to the reduction in stress.

In many cases the equilibrium value of stress reached was zero, in some

cases the test piece eventually extended, with the additional extension

amounting to up to 5% of the unstretched length. We have also observed

this phenomena of relaxation by crystallization, but only in the lower temp-

eratures. For the purpose of the thermodynamic studies, our lowest temp-

erature was 30PC and the highest elongation about 200%, so that we were not

in the crystallizing region of elongation and temperature. Lately Wolstenholme

measured the changes in volume upon elongation of a series of cured gum
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elastomers r351, Using a water-filled dilatometer submerged in a thermo-
stated water bathjnaintained atV 0. 015 OC, Woistenholme claims that
changes in volume of 10" cc can readily be determined. He notices that

the volume of the sample changes with time after a change in length, which

changes were characterized by a rapid drift of the volume in the first half
minute after stretching, followed by a very slow change over a longer time.

Reproducible results were obtainable when successive elongation charges

were made every three minutes. However, water as a confining liquid,

presented the additional problem of swelling of the sample which gave rise

to a slow transient; these difficulties were minimized by pre-soaking the

samples in distilled water at test temperatures for a minimum of 24 hours.

This procedure is claimed to decrease subsequent water absorption by the

specimen and stabilizes the initial sample volume. Subtracting the volume

expansion due to the compressibility of rubber from the total volume change,

defines an irwc.ced volume change which Wolstenholme attributes to the

crystallization of the sample. He tested several commerical elastomer

gums, such as Hevea, Neoprene, Butyl, SBR, Paracril B and Paracril C.

Elongations applied ranged from 0 to 600%, however no precise data was

given for the low elongations. Figure 4 shows the ddfferent volume changes
of a Hevea sarý le % function of stressed length. The compressibility

correction is the expansion of the rubber under a given stress, or in other

words defines a Poisson ration, V smaller than the incompressible value

of 0. S. In filled sar s, he could observe an apparent Poission ratio

greater than 0. 5 due to vacuole formation C 16). Reduction of the temperature
from 350C to 0°C lowers the elongation at which crystallinity becomes

apparent [351. Finally, cycled dilatometer tests lead to a volume hysteresis

that was greatest in crystallizable elastomers and practically zero in

non-crystallizable elastomers.

The first people to measure the volume changes in detail ,nt low and

moderate strains were Gee, Stern and Treloar [36) . From th,& earlier

data of Holt and McPherson it was obvious that if there were any change in

volume upon elongating the sample up to 200%, these changes would have to

be less than 0. 2% expressed in AV/VO , and Gee [371 had predicted small

increases in volume at low strains. For any isotropic compressible body the
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tensile force may be resolved into shear stresses and an isotropic

tension, for a change from L to L and a compressibility K , the volume
expansion AV is given by r37.f:

Lg dL
A.L( p(49)

This equation applies so long as the material remains isotropic, and is

therefore probably not seriously incorrect for rubber at elongations of up

to 100%. By means of Equation (49). it is thus possible to predict values
of AV from the stress-strain curve, or else one can measure the change in
volume directly. Instead of a dilatometer, Gee and co-workers used the
method of hydrostatic weighing in water. An accuracy of up to I part in

60, 000 in volume is claimed. A pure gum rubber containing 2% zinc oxide

gave volume changes approximately double of those expected from application

of Equation (49). This deviation was explained by postulating the forming of

vacuoles around the filler particles, which markedly increase the volume of

the sample. Later testq were run on a sample crosslinked by means of di-

t-butyl peroxide and showed better the agreement of the resuLts with

the theoretical predictions. Figure 5 reproduces Gee and co-workers data,

plotted against the predicted crve.

Several years later, Hewitt and Anthony C 38 1, redetermined the change
in volume of natural rubber croselinked by di-t-butyl peroxide. The strains

at which they were working were lower than those used by Gee and his

group (40% to 110%). Again, to obtain high sensitivity, the experimental

technique was that of measuring the buoyancy in water. The temperature

control was of the order of 0. 005C as measured with a Beckmann differential

thermometer. Figure 6 shows the percent expansion for strains up to

), : 1. 6. Application of Equation (49) results in the theoretical curve as

seen in Fig. 6. To evaluate (0 f/-L),e,T these authors used the lot term

of the Mooney-Rivlin equation:

f prop. ( I- 1A 2 ) (50)
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and integrated (" f/b L) T obtained from actual stress-strain measure-

ments. Generally, the agreement between experimental and theoretical

results is seen to be good .

Allen, Bianchi and Price, [91measured the change in volume indirectly

by following (i/aP)T. L and using one of Maxwell's relationships:

p f/;ýp ) : RVfM) (1
T, L T, p

Experimentally the problem consists of measuring (b f/bT) at

constant volume, that is to say necessitating a hydrostatic V, L pressure

of some 120 atmospheres over a range of 5-10P C. An accurate estimation

of (Y/nT)V, L. was obtained by the increase in stress at approximately 1

degree intervals over 5 degrees in all. Indirect measurements of (b f /T)V, L

were made by measuring (; f/NP)T, L , (6p/BT)v, L and (2f/ýT)p,qL

setting:

fe f - T(Y/nT)L, V (49)

These authors obtain fe /f as a function of elongation (Fig. 7). There is

by no means good agreement with the results of other workers who measured

/f indirectly. In any case these results confirmed that, at moderate

extension ratios. the energetic contribution to the elastic force is approximately

20% . The tests were not at sufficiently low stresses to confirm Roe and

Krigbaum's claim that contrary to the behavior of a Gaussian network,

there is an energetic contribution to the elastic force which varies with

extension ratio at low values of elongation.

Finally in that very broad approach to all aspects of the thermodynamics

of rubber-like elasticity, Allen et al. [91 calculate the ditatiens of their samples

as a funetion of e'ongation, and compare the results with their data, (Fig. 8).
As can be seen, the agreement is not good, but never-the-less the authors

-.-.-- .- - -9 .. .. - -
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suggest that their indirect method of measuring AV via (V/ýT)V, L would

give better results than the direct measurement of dilation, since the latter

is so small.

Concerning the use of water as a liquid, we found in preliminary studies

that the weight of the samples immersed in water Increased markedly as

a function of time. Extrapolation to zero time showed that there was an

immediate gain in weight upon immersion. The use of swelling or inter-

acting fluids in of course highly questionable because of the introduction

of new complexities; thus the choice of a non interacting fluid will be discussed

in the experimental oection.

Rough estimates even suffice to show that the dilatometer cavity acts

as an extremely sensitive thermometer. With a capillary of 0. 04 cm

diameter, it is possible to detect changes of 0. 00010 C using an accurate

cathetometer. In view of the work by Wolstenholme, using water as confining

liquid, we thought first to set the bath temperature at 3. 97*C (maximum

density of H2 0) so that, if water were used as the dilatometer fluid since its

coefficient of thermal expansion is zero at this temperature there should be

no thermometer effect on the diLatometer. Since, subsequent work showed

that water should not be used as the confining fluid, this line had to be

a bandoned.
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0. "Fast" Stretching

The temperature rise during adiabatic stretching of rubber has been
known for a long time. The first observations were reported by Gough

in 1805 roi , but it was Kelvin who first considered the thermodynamic
implications and suceeded in showing that the positive stress-temperature

coefficient was a necessary thermodynamic consequence of the evolution
of heat on extension. A simple application of the second law of thermodynamics

to rubber deformation leads, as stated earlier, to

dqev. : TdS (52)

Thus, since heat is given off, and the sign of dQ.is negative, the entropy
must decrease presumably due to the aligning of the chains and thereby there is

loss of randomness.

There are three different ways of measuring the heat given off by a
rubber during stretching.

(a) direct calorimetric measurement of the heat exchanged when
rubber is stretched isothermally; (b) determination of the temperature
rise during "adiabatic" stretching, and (c) measurement of the change

in heat content between stretched and unstretched rubber.

All work to date has been done by method (b). In the method used by
Dart, Anthony and Guth [391 , two identical rubber samples were held to-
gether by twisting the samples and a thermocouple bead placed between them.
The authors found that usually the temperature change on extension was
different from that on retraction. Generally, samples which were capable

of crystallizing exhibited a marked temperature rise at the onset of crystal-
tinity an d t h er e was even less reversibility during the stretching-

relaxing process, and the cooling on retraction was generally greater than
the heating on extension. The last phenomenon was attributed to a time lag
in the crystallization process since as the time during which the rubbers
were kept stretched before retraction was increased the differences between
the two heats become larger. This was taken to show that crystallization
took place before retraction. In this contet it Is of interest to note that the
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temperature response was immediate for elongations of less than 300 per

cent, but at larger ones there was a lag of the temperature r391 which

amounted to as much as 5 seconds for high elongations and could not be due

to slowness in the galvonometer of thermocouple response. The author.

state: "This implies some process which takes a small amount of time must

be going on in the rubber during elongation". One might suppose that there

is a diffusion process by which the chains accomodate themselves to the

strained positions.

Figure 9 shows the temperature rise in so-called "adiabatic" extension
compiled from the earlier measurements undertaken by Joul e, James and

Guth r 12 1. The data shows, at small elongations, an initial cooling followed

by rapidly rising warming effect as the extension was increased. This course
of the thermal changes must be compared to the entropy changes derived from
stress-temperature measurements. Thus, the initial cooling correspond.

to the initial positive entropy of extension associated with the expansivity of

the rubbers and breaking of chain associations while the subsequent heating
corresponds to the large negative entropy term from the drop in number of

available conformations of the network molecules. At still higher elongations
possible crystallization phenomena can introduce further and larger heat

effects. It is of interest that rubbers which can not crystalline do not heat

as extensively as those that are capable of crystallization. For example, one

can obtain differences in temperatures of 14C in natural rubber at 600%
elonation. but only 22C in a butadiene-acrylic rubber at the same extension.
In this connection, fast stretching thermal measuremerts, which are less

accurate than stress-strain measurements, point out in a very direct manner
to a necessary consequence of the kinetic theory of elasticity; namely that

"the process of deformation of rubber is capable of a reversible transformation

of work into heat" lZ1.

For "fast-stretching", the thermodynamics will be derived as under
"adiabatic". In the Discussion it will be shown why these two conditions

are hardly strictly equivalent. Under truly adiabatic conditions, the net

entropy change molecular ordering plus self-heating is zero, and the change

in temperature dT is given by:

dT dH/Cp, L (53)

r •. • • -.- • ... r• ...- •..-• -, -- -. = _4
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where di{ is the amount of heat developed in the process, and Cp, L the
specific heat at constant length.

The total change in internal energy (adiabatic and at constant pressure) is

given by:

t : fdL oA. fTdS - Jp dV (54)

which can be written in its differential form

Etot. : f -* T(. - P( _V) (55)

SbL p,T i p,T

But from the Maxwell relationships, we have seen that

pT "T p,L (14)

Thus

AE tot. : f fdL - fT( af) dL -fpdV (56)
B , L

If the rubber is deformed adiabatically, then since dS : 0 by definition,

AEI fdL - pdV (57)

And now if the system is allowed to transmit the heat developed during the

adiabatic stretching process, then

AEZ - 1 CVL dT (58)

To

But the pathways which lead to the combined energy chaige AE 1 AE 2

leaves the sample in the same final condition as in the total process

associated with AEtot Hence /.tot: A1 AE 2 and
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f fdL - I;f) dL -1pdV f FfdL Jp dV -IT I C VLdT
bTp, L T(5)

2

and we obtain finally,

f T CV, L dT . Tf dL (60)

To pL

If the further assumption is made, that CV, L in independent of T over the

range in question, then

TJ Xp,L dL
_ _ p, L (61)

C
V,L

However, as in most cases when dealing with a li quid or a solid, the

difference between the internal energy and the enthalpy, or the work term

pdV, is considered negligible. Thus we can write equally well:

AT- TJ'TpL dL (62)

Cp,L

which has been given by Leaderman [401 in the differential form:

?)T )T V( ) (63)
'a s , pr L VL , p
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SECTION I

FORCE VERSUS TEMPERATURE

MEASUREMENTS
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L EXPERIMENTAL

A. Instrumentation and mechanical dXevices
In a study of the responses of rubbers to mechanical deformation

analysis of the results will require the use of thermodynamic, elastic and

rheological equations of state. Consequently it will be necessary to re-

present the variables in 3-dimensional space where the thermodynamic

functions as ordinate will be placed along the z-axis, whilst the x-and

y-axis will show the termperature and the extension ratio. Thus the

thermodynamic state functions will be treated as dependent variables.

During the force verMus temperature measurements, the force

is directly maeasured by a calibrated load cell or more accurately described

as a transducer. The instrument used in all the tests was supplied by

STATHAM Instruments, Los Angeles 64, model number GI-80-350. The

range of load in +- 80 oz. The excitation potential is 15 volts, and the

calibration factor is given as 53. 08 microvolts (open-circuit) per volt
per oz. This unit is not temperature compensated, and therefore shows a

t h e r mal zero shift and a thermal sensitivity shift. Since, the transducer

should be kept at constant temperature during the experiments, thermal

insulation of the transducer was necessary. An Invar drop rod was used,
to hook up the sample to the load cell (Fig. 10).

The strain sensitive wire elements of the transducer are arranged
in the form of a Wheatstone bridge. Direct current was used to excite the

transducer. The value of the potential applied must be a constant in time.
A HARRISON Laboratories, Berkeley Heights, New Jersey, Model 801

C Power Supply was used in conjunction with a SOLA Electric Company,

Chicago, constant voltage tranisformer, catalogue number 30804. This
input potential circuit proved to be remarkably stable (of the order of

I my out of 15 v over a period of 3 months).

The force versus temperature measurements being carried out

at constant length, both ends of the sample holders are clamped down, and

only the force varies as a function of temperature. The sample is con-

tained in a large converted refrigerator (Fig.ll ) which can either be

maintained at constant air-temperature at any point between - 25 0 C and

+ 130 0 C, or can serve as an environmental chamber as the temperature is
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varied. The time-temperature profile is not linear, but as a complete

temperature cycle is of the order of 12 hours, thereby thermal equilibrium

throughout the sampel is ensured at all times. An added feature is that

the atmosphere othe chamber can also be controlled; in most of our tests,

nitrogen gas surrounded the sample continuously.

A compressor and a series of strip heaters allow one to reach

any temperature in a given range. Most of the force versus temperature

experiments were carried out overnight in a time cycle of temperatures

from 250 C to 600 C. The heaters are wired to large 15 ampere power-

stats , and it is possible to read the amperes of current which are

supplied to the various heaters directly. It is also possible to calibrate

the temperature of the environmental chamber at equilibrium as a

function of the power supplied to the heaters. As expected (Fig.12 ), these

curves are roughly linear, since the heat evolved is proportional to the

power which is in turn proportional to the square of the current. These

calibrations are extremely useful in obtaining the desired temperature,

or range of temperatures. To enable nightime testing, a spring loaded

relay w. s installed in the heating circuit; as the temperature rises above

a certain predetermined value, the relay opens the heating circuit, and

the temperature slowly decreases by losses to the ambient as a function

of time. Good thermal insulation ensured the obtention of a long tempera-

tture-time cycle and thermal equilibrium within the samFles.

A copper-constant an thermocuple from the OMEGA Engineering,

Box 47, Springdale, Connecticut was used to measure the temperatures.

The reference temperature of O0 C was established by the physical equi-

librium of ice and water, sustained by a thermoelectric cooler automatic-

ally controlled by a 1 -ellows-microswitch sensing mechanism which res-

ponds to the relative voirmes of ice and water in the hermetic cell. This

Ice-Point Thermocouple Reference System.is manufactured by the

Joseph KAYE and Co., Cambridge 38, Massachusetts; model 1150, and

must be specified for correct use of the 1160 interchangeable Thermocouple

Probe Assembly, also manufactured by the Joseph KAYE Company.

An x-y Potentiometric Recorder, of the HEWLE TT- PACKARD,

MOSELEY division, Pasadena, California, model 7001 AM was used to

determine the force-temperature characteristics of the rubber. On
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potentiornetric mode, large input resistances are allowable in the most

s..etstive-tanges. Temperature differences of the order of 0.0010 C,

and differences in stresses of the order of 1% were easily analyzed. The

pen system used was a bartridge loader, which after some adjustments,

proved to be satisfactory.

A short description of the clamping system follows. Previous very

extensive efforts had failed to devise an adhesive bond which would hold

at elevated temperatures and elongations :471 Figure 13 shows the type of

self-tightening end clamps that were finally constructed. The rubber

sample is imbedded between two rubber strips tightly held by the self-

locklng triangular aluminum wedges. As pressure is applied to the wide

surfaces of these wedges via the back-pressure screw, the wedges tend

to slide forward and lock the sample in its grip. While thi-s method of

holding the sample is highly satisfactory at moderate and high levels of

strain, the inaccuracies of this system become quite large at very low

vaiues of strain (X < 1. 1, where X is the extension ratio). This fact will

be illustrated further on, in the discussion of the weighting factor to be

apl&ied to the Mooney-Rivlin type plot (See Appendix I ).

For the measurement of the elongation of the sample, an overall

length was measured between the pads of rubber. The rest length was

estimated in the same manner. Then after the test, the rubber was taken

out and a mark appeared on the rubber at the place of the pads. This

total length between pad marks was taken for the zero length, and all

other lengths were corrected by the difference in the two initial lengths

(these were not appreciably different). A trial run was carried out by

marking 6 lines on the rubber with white ink, and measuring the relative

distances between the markings with a cathetometer. Plotting the various

positions as a function of the initial positions (with the rubber at rest),

and applying a least square linear fit to the points so obtained, the slopes

of these lines should correspond to the different elongations, measured

by taking overall lengths. The "best" elongations obtained by least

squares analysis correspond fairly closely to the elongations obtained

from an analysis of the overall lengths, however the standard deviations

are quite high, being of the order of 5 to 10%. A later section will be

devoted to the problems of sample shape and sample holders.

o m
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B. Experimental Technique

l. Stress relaxation

Adopting the technique of previous workers [44 , the samples were

held for a long period of time at the highest temperature and at the highest

elongation to insure minimal relaxation of the stress as a function of time

during the actual time-temperature cycles of the tests. A blanket of N2

gas is kept surrounding the sample at all times to prevent oxidative de-

gradation at the higher temperatures.

The total force on the sample is then read from the xy recorder and

plotted as a function of the logarithm of time. There is no claim made

as to the mechanism of relaxation, whether it be one of the forms of creep,

crystallization or aging. However, if the plot of F = f (log1 0 A t) where F

is the tr-tal force is linear. then as can be seen from Fig.14 and Fig.15,

it is easy to calculate the time after which testing can commence, allowing

a two percent overall relaxation of force at the highest tmperature and

elongation over the entire period of the tests.

From Fig.14, the equation of the relaxing specimen is given by:.

F = Alogio A t+ B (64)

where F is the total force, and A and B are the linear coefficients. The

coefficients A and B can be read from the plot. Let us now solve for tit

where At = t2 - t = amount of time for total test, and where eF = (F 2 -F 1 )/F 1

= 0.02 : c F is the relative error on F . From (64)

CF = A(logl 0 (t +At) - log1 0 Y (65)
A log1 0 t + B

Rearranging (65), logo = log(tl +6 t) _ BeF (66)
1 - C F A(I-cF)

This equation can be solved graphically, as shown in Fig.15 . Using

this technique, it is very easy to know when to start the actual testing.

Once the nominal relaxation for the period of testing, is less than two

percent at the highest elongation and temperature, then the relaxation is

considered sufficiently accomplished, and the temperature is decreased

by shutting off the heaters, and the sample is allowed to equilibrate at

room temperature and in the environment of N2 . Using the previously
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described technique of heating and then allowing the sample to cool over

a period of approximately 12 hours, a plot of F(force) expressed in mUlli-

volts versus T(temperature) also in millivolts is obtained on the xy

recorder, as a series of F versus T lines at constant length of the sample.

Using thermocouple celibration constants given in the literaturet433, the

temperature can be expressed in degrees Centigrade or Absolute. The

calibration of the load cell is done by hanging known weights on the sample

holder, and plotting the reduced output (output divided by potential applied)

as a function of the known weights, Plotting the apparent weights at first

allows one to extrapolate to the dead weight of the holder and Invar drop

rod. The second line of Fig. 16 shows the true calibration curve. A

digital voltmeter was used to check from time to time the input potential

to the load cell. It was found to be constant to lmv (out of 15 v applied)

over a 3 month period of time.

Knowing all of the calibration constants (thermocouple and load cell),

and the zero values and ranges of the x and y axes, a simple computer

program (P 31) calculates, for each length, the forces (dynes/cm2 ) and

temperatures (degrees absolute, degrees centigrade). A listing of the

Fortran IV source deck as well as some typical entries and outputs (both

written and punched) are discussed in Appendix I..

At each length, two time-temperature cycles were carried out to

check upon the reversibility and reproducibility of the data. Fig.17 shows

F versus T for four different elongations. It can be seen that the F-T

diagrams are reproducible, and except at the very highest elongations

(350%0), all runs were completely aversible. In order to save time, sub-

sequent testing would only be carried out on a single cycle per length.

From this point on, all of the raw data has been collected and now

only needs to be processed. A series of consecutive computer programs

has been written to calculate the various quantities of interest. Each

punched output is, with some slight modifications, the input for the next

program. Thus a complete analysis of the various parameters at any

stage of the study is easy.

From the force-temperature data at constant length, it is possible

to calculate the stress-strain curves at constant temperature. But these

curves must be corrected for the thermal expansion of the rubber, thus
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obtaining corrected stress-strain data. It is possible to then recalculate
corrected force-temperature data at constant length. One can also fit

the data to a Mooney-Rivlin type plot. It is all of these calculations that

are done in the successive computer programs.

2. Sample preparation

The samples under discussion all came from the same supply (1/16")

of DUNLOP NATURAL RUBBER with one percent dicumyl peroxide as

the crosslinking agent and were obtained by courtesy of Dr. DINGLE. The

samples were stored coldin the dark and, as much as pwssible, all

experiments were carried out on specimens frorr the same slab.

The actual geometrical configuration of the specimens used were

rectangular pieces 80 mm x 2 4 mm cut with a die manufactured by the

CLEAR CUT STEEL RULE DIE Corp., Plainview, Long Island. Great

care had to be taken in the cutting of the samples, in order to avoid nicks

or tears which serve as local stress concentration points and irVtiate

rupture of the sample. A small hydraulic press was used in conjunction

with a slab, of a soft plastic placed between the press and the sample to

be cut. The cut sample was then carefully measured at different points

with a micrometer from STARRETT Number 1010M as to uniformity of

thickness and width. The standard deviations on thickness and width

were of the order of three percent. The length of the sample before

placing it in its grips was measured with a ruler calibrated in millimeters.

A reading could be easily estimated to within 0. 5 mm.
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TABLE I

Number of t lOg 1 0 t net F
Point , hr)• -

0 0 -

1 0.33 -0.478 23.80

2 0.66 -0.181 ?3.55

3 1 0 23.45

4 1.50 0.176 23.40

5 4.33 0.636 23.75

6 21.12 11.324 22.85

7 43.62 1.639 22.65

Stress Relaxation of DA 1-22 as a function of

of time

TABLE II

Number of t log 1 0 t net F
Point (hrs) -

0 0

1 0.25 -0.699 23.40

2 0.50 -0.301 23.30

3 0.75 -0.125 23.20

4 1.00 0 23.15

5 15.50 1.190 23.70

6 19.33 11.286 22.65

7 49.25 1.692 22.30

Stress Relaxation of DA 1-23 as a function

of time
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i. ~RESULTS -

#\. Geometry of Sawples

Two samples of natural rubber were analyzed exhaustively and these

results shall now be presented. The samples examined are numbered

DA 1-22 and DA 1-23. All measurements taken after relaxation and con-

secutive testing cycles. The dimensions are given below:

Rest length Thickness Width Area
(mm) Imm) (mm) (cm2)

DA 1-22 79 1.89 4,11 7.603 .102

DA 1-23 77 1.82 4.06 7.389 .10

B. Relaxation of Samples

The samples were each held at about 175% elongation over a period

of several days, at the highest temperature of 500C. The force or total

stress on the sample was noted as a function of logl 0 t, where t is the

time in hours. From Figuxes 18, 19 and Tables I, U, it is dvident

that the relaxation of stress is linear with logl 0 t . It was found or, pre-

vious samples that either at higher temperatures (T "- 50 0 C), or at higher

elongations (\ -> 3. 00), the relaxation curves were initially linear but

then the strcsses sharpl, diminished with increasing times (FigZO ).

,.. Sometimes the samples even broke during the relaxation tests. Higher

temperatures would naturally increase relaxation, whether it be creep

due to viscoelastic or to chemical relaxationr441 . Higher elongations

would of course increase relaxation induced by crystallization, as well

as accelerating any crack propagation. We were notably unable to
"relax" the synthetic natural rubbers (NATSYN) or the Shell elastomer

(Figs.21,22)due to failure after approximately 100 hoi~rs. However,

probable linear relaxation could be achieved by working at substantially

lower eloneations and lower temperatures with both of these elastomers.

C. Treatment of data

In this section a brief description of the various calculations carried

out upon the raw data by means of a computer program will be given.

From there a series of consecutive programs carry out the prescribed

algebraic operations. From the F versus T data, as mentioned in the

introduction, it is possible to calculate various changes in state
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funcUois. However, it is also possible to present the data in the form

prescribed by MOONEY and RIVLIN r4SI.

It must be remarked at the onset that all of the tests are carried

out at constant length. The thermodynamic relationships are a function

of ratio of length@ at a given temperature. At elevated temperatures,

the normalized length is the total length divided by the rest length at

that same temperature. If the slope of the force versus temperature

data were to be plotted as a function of length, one would find at very

low elongations negative values of the elope (Fig. 23). This is the thermo-

elastic inversion phenomena, first pointed out by Anthony, Cauton and

Guth [463 . It is easy to calculate a corrected elongation on the basis of

the unstressed length at the temperature in question rather than at room

temperature, A set of stress-strain values is obtained at constant

length. Each value of strain is then corrected for thermal volume

expansion by means of the equation:

C (67)

where 'E is the mean linear temperature coefficient of the unstrained

rubber ane A T is the temperature rise in 0C above room temperature.

Equation (I) Is the most general form expressing the temperature de-
pendence of a given parameter. If 7'were to be replaced by a = a(T),

then in order to calculate the temperature dependence of the parameter,

one would have to integrate Equation( 67}verall values of T.

Recently Allen, Bianchi and Price[9 ] showed that a is independent

of elongation and temperature in the intervals X = 1. 0 -2.2 and T = 30P C

-70 C. We shall use their value namely a = 2.196 x 10-4 degi. This

is the only correction that these or other worker- in the field mention.

However as pointed out by Blatzr471 there is also a correction fcr the

stresses. These are forces per unit area, and the area is equally

temperature dependent. Hence this work comprises also correction

terms on the stresses: namely,

-2aAT
Tc = (68)

However, these corrections are very small and most authors simply

neglect them [ 42]

-. • -"Ir ... • "• "- -- •"S=•'-- •''= e• • ' -'to --Now• •,• .
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In esoence, the computer programs were written in order to

as•,mble and index the various data, to sffect cuts in the implied

3-dimensional surface of F-T-k perpendicular to the axis, to correct

for thermal expansion following Equations 467) and (68) the stress-strain

data, and finally to recompute on the one hand the corrected force-

temperature data from which the changes in state functions may be

derived, and on the other hand to calculate the data in form of the

Mooney-Rivlin typeplot. These various programs are described in

Appendix I, where a general summary of the programs used is given,

as well as a detailed analysis of each one.

It is interesting to note that the least square analysis is a weighted

least square, where the weight ascribed to a point is the reciprocal of

the variance of that point. But onc', th,,3 original data are considered to

be of equal weight, all of the subsequent weights are defined. This

allows for muhd morc precise interpretation of the results. In the least

squares fitting technique, we assume no error in the independent variables.

This is not an essential assumption, but simplifies the computations

greatly.

In Appendix I the explanation, listing and input-output formats

will be described. Thus the actual results will be presented in tabular

form just as they appear on the computer output sheets
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III. DISCUSSION

Force versus Temperature

Our study of the force-vermus-temperature data for the two specimens

analyzed brings out a number of interesting points. The first phenomenon of

interest are some aspects of the relaxation curves (See figs 18, 19). As already

mentioner: in the Introduction, r26, 27, 281 where as the classical viscoelastic

relaxation iu given by a linear plot of log force as a function of time, we find

here a linear plot of the decay of force as a function of logarithm time. The

same wam also found to be the case in a study of the thermodynamic interpretations

of tits elastic properties of rubbers obtained from Ethylene-Propylene copolymers

r491 . Why the relaxation should obey this law is not clear; a further study would

be of great interest. It is well established however, that in order to ensure

reversibility of the stress temperature runs, the force at a given elongation and

temperature must remain constant to within the tolerances of our axperimental

technique. Few authors specify the cut off point where the relaxation becomes

too large so that we endeavoured to set a point arbitrarily. Thus we took a total

decrease in force over the entire period of testing, of less than lMat the highest

level of temperature and elongation) as applicable. A preliminary run of force

temperature, uarried out after such a relaxation, showed that sucessive runs

were undistinguishable. However since the second term of the Mooney-Rivlin

equation (2C 2 ) is felt by some authors to arise from thi- lack of attaining equil-

ibriurn, by this criterion however small the relaxation, this procedure could not

be used to ascertain the existence of CZ at true equilibrium. Before a decision

is possible, one would have to wait for a molecular understanding of the relaxation

phenomenon to give us better insight into the true meaning of the C 2 term, if

such a term exists in a true equilibrium state.
-2

In Appendix I it has been shown how very sensitive the function r/.X - X. is

when applied to the Mooney-Rivlin plot, Van der Hoff 22"1 indeed corroborates

our findings doing the error analysis of our and his data, by showing the effect

of a very small change in rest lengt h upon any fitting to the Mooney-Rivlin plot

(Fig. 24). It can be clearly seen that if L is not known with great accuracy,
othe approach of the Mooney-Rivtin plot to ).-4 1, is nieaningless. Van der Hoff

f
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asserts that extremely careful measurements of stress versus strain, and a
least squares linear extrapolation to find the rest length, allows one to measure

a value of ZCa Z 0 when X is close to unity. We had found a substantial,

increasing,departure from linearity close to the rest elongation for both of our

samples. This departure was taken to mean thit the rest length@ were not

accurately known. Consequently in the sensitive range of the Mooney-Riviin

plot, the data were effectively discarded by the use of a weighting function as

described in Appendix I.

Similarily a careful analysis of the data published or available shows us

that Van der Hoff could be quite mistaken. His paper on the extrapolation of

his function of true stress versus strain, is based on the "best" least squares

linear fit of measured stress at low strains. But several points deserve

careful scrutiny of all the known stress versus strain data published for low

values of strain (See Figs. 25, 26, 27 and 28). In particular we note several

things from theso figures.

1. That over a large Lange of X(from >, 1. 05 to X 1. 60), the true

stress strain curve indicates a neo-Hookeian type behavior, i. e. the stress

strain curve is linear. We have fitted these data to a straight line over a range

of X a 1. 05 to X = 1. 80. The low variances and the variances of the coe'ficients

indicate a good least squares fit.

2. Often it is more important to indicate what a curve does not do, rather

than what it does. In all four cases (data collected from Guth, Shen and two in

this study) the true stress strain curve does not extrapolate through the origin.

Even rm;re interestingly the plots indicate that in all four cases, there would be

finite stress at zero strain. Guth's data (Fig. 26) actuaiiy shows that at very low

strains (1. 01) there is actual curvature of the true stress. This curvature is

drawn in dotted lines on the other figures, as a trend rather than specific points.

It is hardly reasonable to suppose that all three authors estimated their original

length with the same sign of error. Rather if there were errors in the deter-

minations of the rest lengths, these errors would be sometimes positive and

sometimes negative. This is not the case. Ali samples even though they are

different, show finite intercepts on the stress axis at infinitesimal strains. In

-
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this context it should be noted that in 3 of the analysesnamely that of Guth and

our two, the @tress strain curves were derived from force temperature data,

while Shen's were measured directly. It would be interesting to be able to plot

the points obtained by Van der Hloff, before he extrapolates them to X :: 1.

3. Coming back to Van der Hoff's measurements, he postulates normal stress-

strain behavior, fits his experimental points to the various functions, and chooses

the function which shows the least fit variance as the best function which he will

exLrapolate to rest length. This seems to be a dangerous argument since, if

the stress-strain behavior is different at very low strains from that at low to

moderate strains, it could be incorrect to extrapolate the rest length following

the function describing the points at moderate straLis. Guth's data (Fig. 26)

indeed seem to show that the point corresponding to ;k : 1. 01 are not on the

linear curve described by the stress - strain relationship at higher strains.

The reason for insisting on this seemingly minor point is that, as was de-

scribed in our Appendix and in Van der Hoff's paper, the value of the rest

length is essential for deriving the behavior of the Mooney-Rivlin plot, and

as will be seen later, also the fraction fa/f (intt. nal energy contribution to the

retractive force), at low values of strain; it is there that one would expect the

Gaussian approximation to be fulfilled.

4. A last point to be brought up in this connection is the fact that the de-

parture from neo-Hookeian behavior is remarkably similar for all four samples.

Taking, as the measure for this departure, the value of the intercept of the true

stress at X a 1 from the least squares line, and ,r 00 divided by the true

itress at some arbitrary value of k within the linear stress-strain limit of all

4 samples (P a 1. 5) as a normalizing factor, we obtain

Guth: 1. 00 / 1.50 0. 0281

Shen: X 1.00 / X = 1.50 : 0.0152

this study: 0
DA1-22 • 1.00 / 1.50 : 0.0191

DA1-23 C, X 1.00 / 1.50 - 0. 0120
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Since the rubbers are different in the three authors' cases, it is not to be

expected that the values of O41 00 / 01. 50 should be equivalent, yet they are

at least of the same order of magnitude. Such is also the case for the values

of negative intercepts on the strain axis. extrapolated along the least square line:

Guth: 0. 986
a:-0

Shen: 0. 992
0a. 0

this study:
DA1 -22 - 0. 990

a:"0

DAI-23 X 0.994
0am 0

Figure 29 shows the engineering stress as a function of straiz,- for both
our samnples at two different temperatures. Using the computer programs as

described previously in Appendix I ,it is possible to calculate the stress-strain

behavior and any of the derived plots for as many temperatures as desired.
Figure 30 shows the Mooney-Rlvlin plot for sample DAl-22 and for various

temperatures. A detailed discussion of the constants 2CI and 2C 2 will be under-

taken in a later paragraph.

Comparing now the Mooney-Rivlin ?lots of the data taken from Guth (Fig. 31).

Shen (Fig. 32) and this work (Fig. 33), we see that in all fur cases, the Mooney-

Rivlin plot shows an upward departure from linearity as the sample approaches

its rest length. Even though many precise determinations of the stress-strain

curve at very low elongations would be necessary, we do not necessarily believe

Van der Hoff's assertion that at low elongations the value of 2C2 vanishes. How-

ever we recognize our own data taken around X : 1, is not sufficiently precise

to enable us to positively reject this aspect of Van der Hoff's work. Returning

to the Mooney-Rivlir, plots of our data (Fig. 30, 33) (samples

DAI-Z2, DAI-23) the weighting function as described in the Appendix I in applied

to the weighted least squares linear fit for the purpose of measuring 2C 1 and 2CZ'

The linear portions of the Mooney-Rivlin plots are roughly parallel as can be

, "A
IP
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seen from Fig. 34. The pcints for both DAI-22 and DAI-23 are statistically

equivalent and are given for various temperatures. At 25 0 C, the values of 2CI

and 2C are respectively, 13. 57 * 105 dynes/cm2 (1. 38 kg/cm 2 ) and 10. 24 .
5 2 2

10 5 dynes/cm (1. 05 kg/cm2 ). The value of 2C 2 is cften lose than that of 2C1

as was mentioned in the Introduction. In our case, however there was a finite

non zero value of 2C 2 calculated for intermediate values of strain.

The temperature dependence of these coefficients is given below and

graphed in Figure 35.

Temp 2C1 • 2C1 2
0 C 10"5 dynes/cm 2  i0 05 dynes/cm 2

25 13. 57 10.24

30 13.77 10.27

35 14.00 10. 32

40 14.21 10. 36

45 14.42 10.41

50 14.63 10.46

55 14. 83 10. 51

60 15.04 10. 57

TABLE III: Temperature dependence of ZC and 2C2

ZC 1 is a linear function of absolute temperature. Comparing this table with

the data obtained by Roe and Krigbaum [ 8) and T. L. Smith :281, we see that

2C 1 is appreciably temperature dependent, but that 2C 2 is practically temperature

independent. For a better view, the values of 2C 1 and 2C of Table III, normalized
to 300 C are compared to the corresponding values of 2C, and 2C2 at 3e C of Roe

and Krigbaum, and are listed in the next table.
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This Roe and This Roe
work Krigbaum work Krigbaum
2C 1 /2C 1  2Cl/2Cl 2C2/ZC2  2C2 /2C2

TC at 3eC at 30°C at 3 OeC at 30C

30 1.000 1.000 1.000 1.000

40 1.035 1.032 1.010 1. 009

50 1.065 1.062 1.019 1.028

60 1.094 1.093 1.028 1.042

TABLE IV : Comparaison of C1 and C2 with literature values

Thus the temperature dependence of 2C 1 is the same as that of Roe and
Krigbaum. The temperature dependence of 2C2 , still small, seems to be

In ,er in their case. Ours resembles more closely the behavior of T. L. Smith's

data 1 28).

One of the very important questions in the theory of rubber elasticity is

the question of the contribution of the internal energy to the total elastic re-

tractive force. Up to recently it was thought that most of the retractive force
at moderate elongations came from the decrease in entropy due to the re-

distribution of r7-- towards higher values, and possibly to some chain alignment.
However lately, it has been shown that in the case of natural rubber, something
like 20% of the force is due to the internal energy even at small strains. By

application of Equation (31) it is possible to calculate fe/f knowing (;Y/•T)p, L
and f vs. X- at different values of the temperature. Figure 36 shows the

values of fe/f for both our samples. There is so much scatter in the data due
to the uncertainty in (f/bT)p, L , that little can be said about the value of fe/f

for low strains except that there does seem to be an energetic contribution to

the total retractive force at low strains , vhich shows a decrease at higher

strains, in accordance with the literature.

The only available figures on the dependency of fe/f on X at low values of

strain come from a paper to be published by Shen, McQuarrie and Jackson [501.
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Figure 37 shows their values. While, for higher strains, all the values in

recent publications, seem to agree, Shen and co-workers at their low strains

show a very strong dependance of fe/f on ). A glance at Equation (31)

shown us that here again we have a particularly sensitive function of ) , since
3

X I goes to OasX-tl.

In the following, we give an analysis of the data presented in tabular form

by Shen and co-workers. Just as Van der Hoff showed the effect of a lrnallX

change of Lo (the rest length) on the Mooney-Rivlin plot, we can show now the

effect of a small change of L on the fe/f plot. Knowing a given change in Lo

for example,!± 0. 01 LO , we can recalculate their values of f /f, and plot them

as in Figure 38. This figure shows very emphatically, as did the earlier one

corresponding to the Mooney-Rivlin plot, the effect of very small (1%6) ch-nges

in rest length on the plot of fe f. Thus once more we would have to know the rest

length with extreme accuracy to learn the true energetic contribution at very low

strains.

We can, now summarize this topic of fe/f by saying that, at low to moderate

strains, (X -6 1. 2 to 2. 5) the contribution to the total retractive force of the internal

energy is of the order of 15 to 20%. At higher elongations, (X > 2.5) there it a

loss of internal energy (fe/f becomes negative) due to alignment of the chains that

are about to crystallize. At very low elongations (.< 1.2) the picture is not at all

clear. While, the Gaussian approximation should be best observed experimentally,

according to the data of Shen and co-workers the internal energy contribution rises

sharply while X-4 1.

Taking the data of Shen for a Mooney-Rivlin plot,(ZC 1 ,- 2C?) shows an

upturn at low strain which Van der Hoff asserts does not exist if the initial length

is very carefully determined. However one must doubt Van der Hoff's asserton

of Hookeian behavior (straight line extending from the origin into the moderate

strain region) as discussed above. It remains then to find a better explanation

of the stress pattern at very low strains, especially the positive intercept on the

stress axis. Combining the evidence of Shen's finding of high internal energy

contributions at low strains with the downward curvature towards the origin of the

stress-strain plot we can postulate the existence of a type of superstructure

!
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in the rubber that imposes some long range order at the very lowest Wtrain,
this superstructure holds; it must be broken up for the rubber to &ssmoe

true through going random behavior at larger strains. This is the samoe as
saying that, at very low strains energy must be supplied to distort the

superstructure. Once the latter has been broken down, then the entropic,

or cooperative rotational, changes of conformation take over. More data

at theme low strains would help clarify and corroborate the picture.

A final paragraph may be devoted to the problem of equilibrium versus
non-equilibrium results. Ever since Ciferri and Flory .251 showed the magnitude

of C2 was influenced by the time scale of the measurements, much debate has

been going on as to the nature of C2 . Unfortunately, since the relaxation of

force is linear with log t, no true equilibrium values have been reported and

therefore the interpretation of C 2 as an equilibrium phenomenon has to be
postponed. In view of this, one must also doubt that Van der Hoff's measure-

ments were at true equilibrium. Thus the whole question of C 2 is still very

much unresolved.



III - 8,

IV. APPENDIX I

General outline of programs:

A. P. 3.1. This program indexes and computes the raw data as it is
read off the xy recorder, an force and temperature. There follows a
listing of the program written in FORTRAN IV, as well as an example
of the listed output. In general each program will have two types of
output, one punched that serves as part of the input to the next program
and the other written as a permanent record of the calculations.

I



AA

IOS.

a 0- *

1 .5

414

r- 11. w

FiVi ^4 x 9 -of
-W 1. $. 0 O

C * - - -*- t1
lri D " - 1 - 41 -1ýi !

0 - ONO .

-, S * IK 7.

J I-x f4 a -

a a- & *.ror

go %Df I-
d U.. L&A 6 S * " - s*1 q .4 :-* %LZ

9L a b.- - - ~ ~ I -ti w 9C l t -

W Cr~; -W' PA tO'd ,

WON 5Orr IfVC.s o 3131 N j W jo F, C > VIL;-u U .L I. ..
&.

0 ON 'r r9



I ii' i '.,-'

89

I b

C 'M

uii

b 0

so

.,ft

o s o
h. 

I

" * *i

V I
o-

• i 
.IIr

* 41 I



III - 90

B, P 391. This program normalizes the data, calculates the normalized

lengths, calculates the various types of stresses and fits the data by

linear least squares analysis. The input to this program is but a slight

modification of the punched output from P 3 1.

The various types of stresses used we defined as follows:

a' (engineering) = F/Area of unstressed sample

or(incompressible) = F/Area of stressed sample

where by incompressible we assume that there is no volume change upon

linear extension. If such is the case, then where F is the total force,

from its geometry, it is easy to calculate the area at any given stress or

strain.

AREA (X) = AREA (1) /X

The program also fits the stress (both engineering and incompressible)

as a function of the temperature. Both the written and the punched output

list the least squares coefficients, their variances and covariances. A

listing of the subroutines is given in this section. There is a plot option,

which allows the checking of any mispunched data very quickly. The out-

put from P 391 is the linear least squares fit of the force-temperature

data. U p to this point no thermalexpansion corrections have

been taken into consideration.

f

I.
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C. P. 392. This program calculates the stress-strain curves at con-

stant temperature from the previous force-temperature curves at con-

stant lengths. With this program added, one now has a complete 3-

dimensional picture of the stresses as a function of strain and temperature.

Some sort of decision must be reached as to the order of the fitting

polynomial. When a testing program was written, two important con-

clusions became evident. Firstly, as the order of the polynomial

increased, the variance decreased markedly: there is a point however,

where, as the order of the fitting polynomial keeps on increasing, the

variance increases abruptly. This is to be expected since, as the fit
gets better, the residues get smaller, while raising the residues to a

high power can give number sufficiently small for the computer to com-
pound them with a zero value (underflow).

Degress of Polynomial Variance

0 2.14. 104

1 7.35 . 102

2 1.97. 102

3 3.22 . 101

4 1.06 . 101

5 3.86 . 103

Secondly it was found that both the x's and the y's to be fitted should

be of the same magnitude. Or, as the magnitude's change with respect

to one another, the coefficients should change by the same ratio. In the

case of the higher order polynomials, the coefficients were found to

change by a much larger order of magnitude. In this present work, it

was decided to use fourth order polynomials to fit the stress-strain data.

and also to multiply the data by a constant such that x and y were of the

same order of magnitude.

Once the stress-strain curves are stored in memory, one can

proceed to the thermal expansion corrections of stress and strain.

These corrections are small as was mentioned previously but s h o u l d still

be taken into account.

finally the program fits by least squares the corrected stress-

strain data. It is important to note that the weights given to the points
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4 are the reciprocal of the varianlces. The propagation of variance, or

mean square error, is described in DEMING' s, Statistical Adjustment

Of Data[483). In general if

y a ax + b (App. 1: 1)
then

dy= xda+db (App. 1: 2)
and

dyz x2 daz + db 2 + 2x da db (App. 1: 3)
where

dy2  017 variance of y
2, 2=

da ,db * a, ab variance of a and b
da db =aab covariance of aand b

We are ausurning no error on x . Equation (App. I:3)allowu one to cal-
cul~ate the variance on y (dependent variable) knowing the elements of
the reciprocal m~atrix and assuming the independent variable to beJ error free.
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D. P 393. From the previous program, it is now possible to calculate

the Mooney-Rivlin fit of the data. From[4:

- .- - = 2 C + 2 C 2 I
-2 1 + z • "r (App. 1:4)

The form of this equation and the importance of the coefficients 2C1 and

*2C 2 are discassed in the main text. However, it need not be obvious that

any measurements at low strains (X-- 1) must be carried out with extreme

accuracy. The following sections will be devoted to the sensitivity of the

ordinate (a/ X -X 2) and to the weight to be given to it any any given value

of the abcissa.

if y-2 (App. 1:5)

and

1X (App. 1:6)

Then the Mooney-Rivlin equation can be written as

= Z-- 2Cj+ 2C2 x

The variance of y as a function of the variances of (stress) and of 1 (the

uns-r 3ssed length) can be derived as follows: From Equation (App. 1:5)

dY=do -., (.2_L4-•-)2 d2 (App. 1:7)

but if

10 (App. 1:8)

, then d,=~ d - ldlo
te 1d (App. 1:9)

W-! can assume that the variance of 1 (the unstressed length) and of I0

(the stressed length) are equal.

Thus dl 12 2 2
dX - + L dl

1 dl2

20
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Replacing the value of dX from Equation (App I410) into Equation

(App I:7), we obtain
2J

2 2 2,1+2x-3 2 dl 2

dy (.do2 + '1, ) (X 2 + 1) 0. (App. L) '1
(X-X ) QX )10

This may be written as

2 Z 2 dl 020
dy = BI do + ( 2 a IApp. 1:12)

where B I and B2 are functions only of X. There are therefore two con-

tributions to the total variance on y, the first from the variance of the

stress and the second from the variance of the unstressed length. It

will be seen in Appendix I that the larger effect comes from the second

term. As previously, the weight given to each point in this plot in equal

to the reciprocal of the total variance of that point.

A careful scrutiny of BI and B 2 show immediately that by far the

most important factor is the variation of the denominator as a function

of X . Clearly, as X-F 1, both denominators approach sero, hence the

variance of y approaches infinite as X approaches unity. The important

conclusion of this study is therefore that as the elongation goes to unity,

or in other words when the sample is close to its unstressed length, the '

uncertainty of the corresponding Mooney-Rivlin stresses tends towards

infinity. 4
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I . P 394. From the punched output of P 392, it in now possible to re-

.-instruct the corrected force-temperature curves. It suffices to inter-
polate the corrected stresses as is the case of P 392, as a function of
temperature, keeping the strain a constant. A least squares linear fit

gives the slope and intercept of the force-temperature lines, which are

of thermodynamic importance.
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SECTION II

"FAST-STRETCHING" of NATURAL RUBBER
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IIl. EXPERIMENTAL

For the purpose of determining t r, e temperature rise in the sampte

upon eloniation, it was necessary to embed a small temperature measur-

ing device. This 'thermometer' must have a large thermal response, since
0

we are interested in analyzing temperature changes of the order of 0. 01 C.

Referring back to Part i1, it is now much more obvious wh) that study had

been .ndertaken. The use of thermocouple sensors requires very sensitive

..ncro-volt-neters, the usual sensitivity of a thermocouple such as copper-

constantan is 0. 040 my per degrees Centgrade. The measurement of C0. UI (0
would require the measurement of 4 • 10-5 my, which is outside the real-m

of nor,nal type instrumentation.

Thermistors exhibit several interesting features, one of which is a very

high temperature coefficient of resistance. For example, with the type of
bead thermistor that we used, a sensitivity of 10 mv per degree Centigrade

is easily obtainable. This means a sensitivity of about Z50 times the magnitude

that could be obtained with a thermocouple sensor. Embedding the therrn-miqor

a Pnit -ade in t :e rubber with a ruzor biade, this s houid have :itt e' e •C c

upon the stress distriubution throughout the sample, even though the

t•enr meter !,,-ad is finite, approximatel- 0. 03 inches in diar.etcr.

Once the thermistor probe is embedded, it is held in place by a iittle

drop of rubber cement applied to each side of the slit. By operating a 1.inear

Power Activator (POLYNOID!. rnodei number 01 A I.qinner Praecinn Indus-

tries, New Britain, Conn. ) it is possible to stretch the sample over a distance

of about 6 inches n less than 0. 1 secs. This is a fast stratch, and helo-,•

will be referred to as such (fast-stretch tests). As will be seen in a further

section, to labei these tests as being truly adiabatic requires further discussion.

Fhe increase in length upon extension can be measured with a L.inear

Mlotion Potentiometer. Such an instrument was purchased from Bourns, inc.

Riverside, California; model number 156, with a total travel length of 6. 1 ".

Knowing the rest length of the sample, the stressed length from which the

extension comnmences, it is possible to calibrate the linear potentiometer

directlyv in cen,,meters of rubber sample. This was done in ig. 39. It is

there:ore. easy Lo read oft' the stressed length directl\ fruom . ig. 3q, and to
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calculate the elongation of the sample knowing what its unstressed length

is. The final stressed length is determined by the position of the rest against

which the Polynoid Activator comes to. Small magnets hold the Activator's
core in place and prevent needless bouncing as the sample is stressed or

relaxed. The height of the rest is controlled by a lab-Jack, which was
mounted in such a manner that the platform can .aove without changing the
position of its central torque axis. A hole was drilled through the constant

temperature chamber, and the stretching of the sample was controlled from
the outside.

All tests were run at constant temperature. It was much easier to analyze

the data if the base lines were roughly horisontal. A 25 W white light bulb

connected to a small powerstat suffic ed to keep the chamber at approximately
30 C. A 15 W fluorescent bulb produced a very noisy interference with the

thermistor circuit and had to be eliminated. Figs. 40, 41 show small portions

of base lines the differences between them is attributed to the noise emitted

by the fluorescent lamp.

In the course of these Lesis, a study of the trne dependency of a stress
"spike" was also carried out. This was done by activating the load cell or

transducer and measuring the change in force with time.

On the other hand, the progress of relaxation was not followed at the

highest temperature. Instead, the sample was strethed a few times to a
of approximately 2. 50, and then hold there for about 12 hours for conditioning.

In parallel with the measuring of the thermal effects of "fast-stretching,;" we

will now develop certain relationships that were implied in Part II. There it

was shown that:

Ti 4 _1 1 - a Part II: Equation

2

es i 4 Ti 2  2 Part 11: Eqiation

4R Ti 2

bet 1 0 Part II: Equation
it



i
!I

Thus while the reduced output, Aes , at the inflection point is a function of

(a). the bridge ratio: the tangent at the lnflection point io tndependen. of the (a)

ratio. In most cases to obtain any sensitivity at a given point, it is necessary

to compensate or bucK the output at the given point and Just measure the net

voltage of the total circuit. This presents several inconveniences, the most

important of which Is the difficulty to obtain a very stable compensating or

bucking source, Looking at Equation 11:12, it is obvious that Aeli to a function

of T and R which are fixed and (a) the bridge ratio, which it variable. ThusI i
by changing the value of (a) (obtained by changing either R or R? )I one can

supress the reduced output to any value desired. Over a large range of (a)
(a : 0 to a -1.- ), the vallie of 6eli varies from Ti ,- 0. 5 to TI - 0.5,

and, as in our case TI :u 0. 1. &ait varies approximately from 0. 6 to - 0. 4.

There exists therefore a value of (a) , such that Aeli 0, and for which the

tangent at the inflection p olnt is finite and independent of (a). Experimentally

then, it is possible to measure changes of temperature of very small magnitude

(0. 001C).

While carrying out these fast-stretch tests, it was noticed that the thermistor

output was not returning to its original base line. even after a relatively long

period of time. From a rough calculation of heat dissipation through the sample,

it was deduced that all of the heat should have been dissipated within a few

minutes of the stretch so that the thermistor could not indicate residual stretching

heat. From l71g. 41 it can be seen that at the end of some 3 minutes ( x axis:

50 secs/cm) the signals reached a steady value. Even though the base lines are j
different, they are parallel. Therefore, either the thermistor is responding to

some other variable than temperature, or there io some process taking place in

the sample which is exothermic. It is also very important that the applied

potential across the Wheatstone bridge be a constant. A small drift in E can

give a considerable change in base lines.

We examined the latter hypotheses first, but since neither relaxation nor

crystallization could be seriously considered (stress relaxation work convinced

us that under these conditions the relaxation was minimal, while at small
elongations of the order of 100% there could not be any crystallliation phenomenon I
accounting for an exothermic process), we turned our attention to the possible k

R
_ _ _ _ _ _. . . .



I HI- 1Z8

I.
*

a

C
I
I
Ia
I
9
I

0*4G
ff� -

J.I

*0� ;o
- 6)

A

w
.1� o

a � t

8.4

*0+. 0
0 -�

cIJ
ci4

0 4.

o Q
N

9 9

J.N3N0dV4O� �flSS3�
0± 3fl0 3SNOdS3� �01SIV4�3H± NI 3�NVN�

a 9

F



t1l 129

Crinc

dyne/cma

100-

so-
w

so- DAI - 23
T 2511C

z

40-
iE
t2

20-

0
1'0 2.0 3-0

ELONGATION

Fig. 43: True xtrems an a function of straLn



III - 130

response of the thermistor to some other variable. Plotting the reversible

difference in base lines as a function of strain (I'ig. 4Z) , we found that,

neglecting some scattering, a straight line could be drawn through the point

at which we started to stretch. This observation combined with the fact that,

if stretching took place slowly, the difference In base lines cobserved was the

same as for a fast stretch, led us to conclude that the thermistor was pressure

sensitive and that the plot of (Fig. 42) amounts to a measure of true sti *es as

a function of strain. A careful compart-on of the true stress as a function of

strain, (Fig. 43) shows a linear relattoship between this and the course of

the thermistor base line. Thus monitoring the fast stretching experiment

by a thermistor leads to the combined measurement of the stress and the

temperature rise. Unfortunately: there is too much scatter in the points

(Fig. 42) to enable us to use this technique to measure the stress in the rubber

directly. However due to the differences in time response of pressure and

temperature on the thermistor (temperature time response is practically

immediate), the temperature rise upon stretching is given by the total peak

while the incremental pressure is given by the differences in base lines.

A. Calibration of Thermistor 4

Using a LEEDS-NORTHRUP CO. , Wheatstone bridge, catalogue number

4760, in conjunction with a large 2 volt WILLARD battery and a Dc mil-tivoltmeter

from SENSITIVE RESEARCH Instrument Corp. , Mount Vernon, New York,

we measured the rc.iatanc. R of th, theiarra-sator at a series of temperatures.

Treating the R-T data as shown in Part I1, it was readily possible to calibrate

the thermistor (Appendix II).
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X 0f

Run. _ recorder rubber (cms) final &TC ."tp"vcms

1 30.6 11.8 1.62 0.028

1' 0,017

2 0.028

2' 0. 014

3 40.2 13.6 1.87 0. 073 0.55

31 0. 064 0. 60
4 0.065 0.60
41 0. 058 0. 60

5 50.0 15.5 2.12 0.105 0.690

51 0.0068 1.O0

6 0.105 0.95

6' 0.078 1.00

7 62.2 17.9 2.45 0. 170 1. 30
71 0. 160 1. 30
8 0. 162 1.30
8 0. 157 1.40

9 77.8 21. 0 .088 0. 32 1.65
91 0.224 1.70

00 O.zz6 1.55
10' 0.207 1.40

11 68.0 19. 1 2.6o O. 168 1.00
11' 0. 168 1.20
12 0. 170 1.10
121 0. 165 1.25

13 54.5 16.4 2.25 0. 129 0.85
13' 0. 109 0.85
14 0. 126 0. 85
141 0.120 0.90

TABLE V

Summary of fast-stretching experiments

____ ____ ____ _ _
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a
TABLE V Cont'd

L of

Run i recorder rubber (ctus) finar l I 0 ,A p" c

15 43.6 14.3 1.96 0.081 0.60

15' 0. 078 0.60

16 0.086 O.60-

16' 0. 073 0.60

17 36.o 12. 0.061 0. so

171 0.056 0.45

18 0.067 0.60

18' 0.056 Z. 50 p

4

'I
I.!
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It. RRESULTS

A typical sample of natural rubber cut out from the same sheet as those
used in other experiments (number DAI-26) waj employed in the experiment

described in detail below. It had the following dimensions:

Zero length _- 80 mm, width = 4. 02 mm, thickness - 1. 90 mm, length

at rest - 73 mm, area = 7. (-38 10-2 cm2

The operating temperature was 28. 25 C, and the thermistor circuit set at

(Fig. 44):

E : I volt, R1 : 1430.A. R 2 : 999.9 j6 R 4 _- 1412 j, a: 1000

The stretching of the sample starts from a slightly elongated position 0- 1. 10)

so am to minimize errors attending the "rest" state and also to reduce the effect

of the relaxation spike. The whole problem will be dwelt upon in detail below in

the Dis-ussion section but, briefly, what seems to happen is that when the rubber

is rapidly brought back by our sample holder from the stretched to the unstretched

condition, its own retraction speed is slower than the movement of the solenoid,

and its shape becomes momentarily buckled during the relaxation to zero force.

The sample returns then to its original shape and elongation of 1. 1 slowly and

thus returns to a state of slight sti is. This return is better defined than one to

complete rest.

Fig. 39 shows the linear calibration used for determining the increse in

length of the sample upon stretching. Table V shows the final elongations to which

the rubber was stretched. as well as the differences in base lines and changes

in temperature.

Figure 45 shows the increase and decrease of temperature as a function of

elongation, remembering that the original elonpation from which rubber is

stretched is 1. 10.

I

I
I
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The experirmcnts of fast-stretching approximate adiabatic conditions. If

the stretching of the sample is performed sufficiently fast, then the heat developed

on account of the loss of entropy (dQ rev - TdS) is measurable as the temp-

e-sature rise of the sample. Retracting, the sample turns colder, as the entropy

returns towards its maximum value at rest. In the process of retraction, in the

ideally adiabatic experiment, one should be able to measure a hysterisis in the rate

of return of the sample to the unstressed state since th S is positive, the reaction

endothermic and yet no heat available from the environment. In the case of

atomic gases, which would expand in analogy, the increase in entropy would be

immediately balanced by corresponding cooling. In the came of rubber the

additional number of conformat1ons can be assumed only by drawing on the energy

reservoir of rotationla and vibra:ionaal degrees of freedom which means that

while the rubber becomes more random it also becomes less mobile. This is

the same process which causes the gss atoms to cool but cooling in the case of

rubber means lower mobility and thereby a slower return to its rest length. In

other words, for rubber to return to its original shape with the same speed with

which it could be extended would require an influx of heat or a not fully adiabatic

experiment.

It is then interesting to notice the time effect on the force (Fig. 46) when the

sample is being stretched, while all three variables, namely the rise in temp-

erature of the sample, the length to which the sample is being stretched, and the

tntal fc]rC#" app1,eti on the sample, are being plotted simultaneouzly. There, " m";

to be a relaxation of the force to a reasonably steady value after several minutes

after the sample has been stretched fast (1/10 second) to a constant length. This

phenomenon was nmuch more clearly established when a counter e. m. f. (bucking

force) af approximately 12 mv was used to measure the total e. m. f. of 13 my.

(Figs. 47, 48). In order to elucidate the nature of these force peaks, two functions

were examined. Firstly, the effect of the pro-elongation from which the sample

is stretched, and secondly the influence of temperature. From Figures 49

and 50 it is clear that for stretches to the same final Iength, the lower the initiat

length, the steeper is the relaxation from the maximum height of the spike.

Figure 49 shows the relaxation curves for the elongating samples. The equilibrium j
force attained is the same whatever the initial elongation, as it should be. One [

II
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*a11 t.an.Cu'Lte a relaxaLion Limt fur Lhe recuvery from the overshoot force which

turns out to be the shorter the more the sample has been pro-stretched. This dif-

ference in stretching distance arises of course from the fact that different elong-

ations were ob *ned. We find for the sample stretched from rest length to a

X• - 2.00, a relaxation time of about 150 minutes for the slow relaxation range

of the sample stretched from X : 1. 50 to 2. 00. As might be expected from the

sharpness of the spike marking the overshooting of force, there is also a very

fast relaxation regime which for all the runs is of the order of r - 1. 5 minutes.

InterestingLy enough the relaxation process !-r this intcrnal local ov~roxotnsuion

of the sanple has only two relaxation steps. On retraction the samples start

from the same strain, arrive at the different elongations so that equilibrium forces

at the end of the experiment are correspovdingly different. Again an overshooting

is observed, now towards the low side of the force. In fact the sample can be

observed temporarily to buckle so that it is obvious that it does not retract with

its spontaneous speed but is being pushed. The recovery to the equilibrium force

again differs for the 3 samples but the relaxation times are difficult to establish

because the time when the sample assumes its equilibrium length are hard to

ascertain.

To explain these observations it is postulated that the overshooting of the

force at the end of the stretching is due to the high speeds of the test, too high

for the chains to follow the motions in an affine manner and the net effect is an

increase in labile entanglements, that act as temporary additional cross-links

and raise the moduus. When the motion stops, the force decreases steadily

because of relaxation and disappearance of the network of labile crosslinks.

Stating it differently, the chains are impeded in their extension and aligning by

preexisting entanglements and internal viscosity. Thus one can understand that

the relaxation of the force in the experiments producing the greatest elongation

shoula have the fastest decay since in this case more labile crosslinks (shorter -

r ) have been created. Pre-stretching the sample to an appreciable elongation

means that the chains are more equilibrated towards the final strain and there is

less additional entanglements on further stretching.

During the retraction process complications of molecular motion should be

less due to entanglement processes and more to the fact that the internal friction

may not allow the chains to return to their random conformations during the
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Fig. 52: Effect of Temperature upon retractionof rubber
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instrumental time interval. This lag will be enhanced by the largely

adiabatic character of the retraction which permits the chains only to a

small extent to acquire the necessary influx of enthalpy from the surround-

ings and has to rely largely on conversions from the internal energy reservoir.

The picture is one of a substantial number of molecules not recovering their

rest length fast enough, the sample stays longer than if it would contract in

less than the instrument time and in fact it can be seen to buckl a and bow

during the fast push back. In this context, it is interesting to follow the

effect of temperature on these phenomena. Figures 51 and 52 show the

action of temperature on the relaxation of the force as a function of time.

Figure 51 demonstrates that at higher temperature the force relaxes faster.

This is to be expected, especially on the basis of our picture of labile entangle-

ments. One can see also on Figure 51 that the results are completely re-

producible, (runs 1 and 2) and that the points lie on the same relaxation curve.

Figure 52 shows the comparable behavior for the retraction relaxation curves.

It would be interesting to examine the phenomenon of time dependent moduli

as affected by the speed of stretching more quantitatively. Ordinarily the

relaxation times of a well vulcanized rubber are too short to become noticeable

during ordinary stretching experiments. In our case we have a rather weakly

cross-linked rubber which permits entanglements to become more effective

and to form time dependent cross-links which, as the experiments show,

exhibit much longer relaxation times.

Finally the specific heat of our rubber at constant length and pressure

was calculated using Equation 63

C dT - T I(K /1T)p,L dL/ L,p
Vp

and integrating this expression between L and L assuming the approximation

that C, p is independent of T, which is acceptable because of the small AT

we obtain that t

C :T f(ZIPT)pL dL

pV AT
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This expression can be further simplified, by setting

X: L/L 0

or dX dL/Lo

and since V = V 0 L A , then0 O 0

where A initial area0

T Ai (N /'AT)C : {eng p, L
L, p (69)

p AT

with feng. as the stress per unit undeformed area.

Calculation of the integral of the force-temperature coefficient is done

by the use of a planimeter. Figure 33 shows the plot of (;0fen /B L

as a function of X. All elongations start at X = 1. 1 for reasons Ta L

that we have already discussed.

area of (P/ET)p, L (Y/1T) p
Xfinal cm 2  10-3 p, L

1.50 0.031 1. 2Z5 0.91

1.75 0.072 2.840 0.91

2.00 0.121 4.780 0.92

2.25 0.179 7.060 0. 9z

2.50 0.247 9.750 0.93

2.80 0. 351 13.880 0.93

TABLE VI: Values of (NfIT)p, L and p estimated

Application of Equatioru69) permits one to calculate C as mentioned before.

The specific heat at 300 K to given below

I
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TJ W(T)p.L d-

X final ,_ _ __10"_5 A_ T ___p, 0.
|L

1.50 3. 675 0. 019 0. SOS
1.75S 8.520 0. 045 0. 495

2 . 00 14.340 0.0o8oO. 465

Z.,25 21. ISO O. 120 0.455

50 29. 250 0. 165 0.452

Z. 80 41.640 0.225 0.470

TABLE VII: Values of C at different elongationsp,L

Thus the specific heats calculated from the adiabatic temperature rise and

from the force temperature measurements are quite similar to those of

natural rubber measured by calorimetric means [ 511 1. e. have a value of

0. 480 cal/g C at 300P K. The agreement is deemed good considering the

fact that there is appreciable scattering of the measurement of 6Tadiabatic

and also the fact that we were engaged here in an indirect method of

measurement.

The specific heat of the rubber an expected, decreases with increasirig

elongation. Our numbers should be taken as approximate rather than quantita-

tively. The decrease in specific heat observed is 10% . Bekkedahl and

Matheson [511 have shown that there is a decrease of some 8% in the specific

heat of partly crystalline rubber versus the amorphous sample. When chains

stretch and align, there is a loss of some degrees of freedo',n. In the random

conformation, the molecules have 3 vibrational degrees of freedom, and some

of the possible 3 rotational . When they align and or start to crystallize, there

is a freezing of vibrational degrees of freedom along the long dimensions of the

chains and al,,o of some rotational motions expressing itself as a net decrease

in specific heat. It would be very interesting to measure the specific heat of

various elastomers at different elongations and temperatures. These results

should then be compared to the results obtained from direct calorimetric

measurements, and x-ray, I. R. and birefringence data.
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IV APPENDIX II

Calibration of Thermistor 1 4

A. Resistance a. a function of Temperature

Run TaC R-JL. TaC R J T*C R

1 33.99 1740 29.96 2018 25.91 23.48

2 33.94 1744 29.92 2023 25.90 2350

3 33.91 1744 29.89 2025 25.88 2353

Ave. 33.95 1742 29.91 2022 25.89 2350

TABLE VIII: Resistance as a function of temperature

B. Determination of 8 30. 000 C

T °C TOK I /T I/OK R .A loglOR 0 OK

33.95 307. 10 0. 0032563 1742 0.2410 3446

29. 91 303. 06 0. 0032996 2022 0. 3058 3385
25.89 299. 04 0. 0033440 2350 0. 3211

TABLE IX: Determination of 8 30. 00°C

where R 2. 3026 (log 1O R1  - 10 °10 R2)2

I/T 1 - I/T 0

and at 29.910 C, 8: 34150 K, R 2022-f A
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It
a

2.0-

THERMISTOR 0 4

R1 - 1430S1

R2 : 999.9 S1

1.5 R4 : 1412 il
E : lOOmv

i 1.0

SLOPE 0.88 mv/tC
0.5-

0

C ,- J I I I I I I

30.0 30.4 30.8 31.2 31.6

TEMPERATURE (OC)

Fig. 54 : Calibration of Thermistor • 4

ii imbedded in rubber specimen

I.
I
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C. Determination of R
4

R4  R M - 2Tj 2022( 3415 - 606. 12) 1412JL

-,4 2Tt (3415 4 606. 12)

D. Checking of Therm stor • 4

kelt- T,~i/ - 0.500 for a 1 1000

e6i -- 0.4113 mv/mv

Using E 100 mv, R, : 100.A R2  0. 1A andR 4 : 1412 L.

/Sel : O. 4137 my

/elli -4 T1
2 

- t2

4 A1 Tt

,Ae' - 9.002 O I03 my C

0
T C Mv
30. 33 1. 39 See Figure 54 , which shows the calibration

30.44 . 30 of the thermistor actualty imbedded in the sample.!

30.56 1. 19

30.71 1.06 A*e, -- 0.88 10-3 my / C

mt

mIv
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SECTION III

DILATOMETRY OF NATURAL RUBBER

I
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EXPERIMENTAL

The change in total volume of a typical rubber during stretching as

we have seen previously, is very smaUl, of the order of 10-4 cc/cc [36, 37

38] . Our basic design of the dilatometer and the method of testing resembles

closely the methods used by Dr. Buckely at the Esso Research Laboratories.

Figures 55, 5t, 5- show sket. hes of t:.e aluminum dilaLorneter machined

by R. Parla at the Brooklyn Polytechnic Institute. Following Buckely's

ciaims, we planned first to place the dilatorneter in an air bath controlled

to :t 0. 010 C; it, was thought then to be easy to obtain a control of ± 0. 0010 C

in the dilatometer cavity on account of the large heat sink constitutsd by the

mass of metal. Constancy to 0. 0016C was thought necessary to ensure that

thermometer effects would be an order of magnitude smaller than the volume

changes due to the stretching of the samples. Buckely and his group

used Nichrome wire, commercially available, and showed that the variation

in thickness of the wire was negligible, so that the construction of the di-

latometer could be based on a design witL pull from the outside . As will be

shown in the Results section, this was proved to be correct. Unfortunately

other essential features of the Esso dilatometer proved to be unworkable, and

our dilatometric technique had to be extensively changed. In particular, Buckely

and co-workers' use of water as the confining liquid like others quoted before,

again rupported our original idea of working at 3. 97"C, at which the co-

efficient of thermal expansion of water is nil, had to be abandoned, mince water

was found to swell rubber, even over short periods of time [521

It was aiso noticed that our natural rubber became discolored upon long

immersions in water and a detailed analysis of the behavior of this elastomer

in various liquids was undertaken. Fig. 58 shows the percen. weight change

as a function of time of natural rubber in various liquids. r 521 While no

claim is made as to the change in volume upon immersion. these tests do show

a distinct atnd reproducible change in weight. A truly acceptable non-inter-

acting, Lonfining fluid for the diiatometric studies, must not cause any measur-

able uptake over a substantial period of time. Various salts were added to

water. Their effect on the "swelling" is shown in Fig. 58. Many other fluids

were tried such as fluorocarbons, other known non-molvents, mono, di-, and

trifunctional and alkali salts. Glycerine, pentanediol and Li salts were the

only non-swelling agents found for natural rubber. It was rationalized that Li
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I, salts were inert because as a result of their large solubility and because of

the high charge to volume density of the Li-salts they hold their solvating

water most tightly. Li-chlorides as well an nitrates seemed to have no

swelling cffects, Rather than pentanediol or glycerine, which were too

highly viscous and hygroscopic under our conditions it was decided to

use the concentrated nitrate solutions because of better metal passivation.
For a period of over 200 hours, there was no detectable weight pickup, but

unfortunately these salts had a corroding effect on the aluminium btock.

Various tests were run, and it was shown that a 3 to 5 mil deposit of Nickel
metal plated electrolytically on the aluminium seemed to protect the latter

from corrosion. All holders, screws and other accessories were also nickel

plated or made of stainless steel. A nechrome wire was used to elongate

the sample. The sample hcfder was of the type (self-tightening wedges with

rubber pads) as that used in the force-temperature measurements (Wig 13).

A detail of the pads is also shown. They were bonded to the wedges with an

epoxy resin and, as the sample is stressed, are kept in place by tightening
of the wedges. Again, this type holder was found to be very efficient at

moderate to high elongations.

The design of the dilatometer is featured further; 2 rubber gaskets form
a tight seal with the glass plate (thickness of 5 mm) to which a female joint
is attached. A specially constructed doubly inverted teflon seal was designed

to allow passage of the nichrome wire through the block, without leakage.

Fig. 57 shows a detailed crossectional view of this special gasket. The

interchangeable capillaries attached to a fitting male joint can be inserted in

the dilatometer fitting. It was found that the thermometer effect of the LiNO3

solution in the cavity required 0. 00010 C to ensure base line stability. A

constant temperature bath controlling to better than 0. 0010 C was then designed

(Figs 59, 60).

To this end. a few basic principles concerning thermal control had to be

observed or elaborated. Firstly all individual factors must be isolated and
tested separately. A thermistor bead was used to ascertain the fluctuations
in temperature in various areas of the bath. Careful checking with Beckman

thermometer in conjunction with the thermistor tested for random departures

from the base Uine of no more than about 5 10"t C. It was

I
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essential to hold the temperature within 0. 001 C for several days. To thils

end, a lightening heavy duty stirrer was placed in each corner of the bath.

The thermistor control probe was hooked up to a Bayley proportional con-

troller, model 123, Bayley Instrument Company, Danville, California to

sense and anticipate the changes in temperature. This unit is guaranteed

to * 0. 0 0 1 0 C. In view of the good insulation a glo-quartz immersion 110

W heater was the only heat source for the overall bath.

The evaporation of the water from the bath was the single biggest dis-

turbance. It was found necessary to enclose the water by a surrounding air

bath and to heat the air about 3eC above the water temperature which was

kept at 340C and to control the air temperature by a thermistemp on-off

contoller, model 171. Slabs of polystyrene foam provided thermal insulation

from the room, and a squirrel-cage fan was used to mix the air. Since the

lightening stirrers were running quite hot, the air temperature was maintained

at approximately 370 C by blowing in cool air with a fan. To maintain a water

temperature over a period of days of - 0. 0005eC greatest care must be taken

in handling the whole system. Two holes were cut out of the front polystyrene

slab and rubber gloves inserted. Further to perform the stretching of the

rubber, two axles were guided through the walls of the bath gasketed with 0

ring seals. By turning the shafts, the samples can be stretched without

disturbance of the thermal equilibrium.

The solutions of 60 g of LiN0 3 /100 cc of H20 were refluxed for about2!

24 hours and filtered through milipore filters. The rubber sampies were

placed into the dilatometer, all gaskets tightened with a torque wrench, and

the concentrated LUNO3 solution poured into the dilatometer cavities. The

latter were then degawd thoroughly by applying a vacuum: since small bubbles

could cause variations in capilllary height, due to either atsmospheric and

or thermal changes, orders of magnitude larger than the effect we were

looking for. For example, a change in pressure of 0. 01 atm. on a bubble

of . I cc, would cause the level in the capillary to change by I cme while the

expected change in volume by stretching the rubber is of the order of I mm tI
Small thermal changes create of course, similar changes in the height of the

capillaries.

After the dilatometer is placed into the bath gross thermal control is
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obtained by using the thermistemp on-off control'ier. After a period of

approximately 12 hours to ensure thermal equilibrium, the excess LiNO3

solution is wiped off the top of the capillaries, and the bath is allowed to

cool a few hundreths of a degree. The proportional controller is then switched

on, and the whole thermal system it allowed anew to come to equilibrium.

The height in the capillaries in plotted an a function of time to est~blish the

base lines. Generally after a horizontal or a slowly varying base line has

been reached, both samples were stretched simultaneously and the changes

in volume plotted as a function of time.

In view of the paramount importance of maintaining constant temperature

of at least 1 0. 0010 C over long periods of time an stressed above the true

temperatures of the bath and in the dilatometric cavities were also recorded,

To this end, thermistor probe was placed near the Beckman in the bath, and

the readings from the Beckman as well as the changes in height of the capillaries

followed. The Beckman thermometer showed a stability at 340C of at least

0. 001aC over a span of several hours, while the thermistor probe and the

height of the liquid in the capiliaries indicate a stability better than 5 - I0 40 C.

Testing for the degree of leak proofedness of the dilatometer wires,

pulling them with no sample present showed no movement in the capillaries.

We can thus assume also further that there are no variations8 in the diameter

of the wires.

The height of the liquid.columana. in the capillarles

(precision bore) was calibrated as a function of degrees Centigrade by plotting

the height in the capillaries versus temperature read on the Beckman. We

ascertained an average value of 59. 5 cm/degree Centigrade for the capillaries

of diameter of 0. 0383 cm, and a volume calibration of 1. 15 10-3 cc/cm.

The samples used were natural rubber cut from the same sheet as used in

the other tests.
length at Thickness Width Area

Sample rest (mm) (mm) (mm) 102 cm 2

DAI-24 49 1.90 3.96 7. 524

DAI-25 49 7. 83 4.11 7. 521

I
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After the stability of the systems was ascertained both samples (DAI-24

and DAI-25) were stretched by the same amount at the same time. As both
samples were from the same sheet, one would have expected the same resuits
from both cavities. Unfortunately , before a sufficient no.'ce€bi 1 tested, we

ran into some slow leakage problems of the gaskets and were able to get
acceptable data for just 2 runs. The trouble ti almost certainly due to corrosion
of the metal of the gasket grooves. The decision to place the dilatometer in

water instead of in an air bath, and the rubber into salt solution instead nf Into
pure water had to be taken long after the dilatometer construction so that
aluminium turned out to be the wrong metal to use. For further work the
dilatometer should be constructed of a stainless steel resistant to salt corrosion.

and the flat gaskets be made out of teflon to minimise their swelling.

V
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I f. RESULTS

In view of the limitations discussed above, we present the dilatometric

data more to show trend and magnitude rather than as a quantitative result.

Figures 61 and 62 show the behavior of the capillaries as a function of the

elongation of the samples and the time for which they were held at a given

elongation. As can be seen, the base line is very stable for the rear cavity

(DAI -25) and slightLy increasing for the front cavity (DAI-24). Thus it would

be difficult to subtract the ill-defined base line to obtain the dilation effect on

sample DA1 -24. T'Agures 63 and 64 show the same results expressed in

changes of volume (AV/Vo 10-4) as a function of normalized length.

There can be no doubt that the volume of the rubber increases from the

very first stretching, but that the amount of increase is very small.

i
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Calibration Wheel 0. 2394 cms/tooth Vo 0. 3700

Sample: DAI -24 Cap. 1. 15 10-3 cc/cm

Length
(mm) X AV(cm) A V(cc) /AV/V0 cc/cc

49 1 0 0 0

49 4- 23.94 : 72.94 1.49 0.015 1. 72 10-5 4. 65 10-5

49 ,L 47.88 96.88 1.98 0.045 5.20 10-5 1.40 10"4

49 4.-- 71.82 : 120.82 2.46 0.110 1.26 10- 4  3.40 10"4

49 .4- 95.76 144.26 2. 96 0.120 1. 38 10 3.74 10

49 4- 105. 33: 154. 33 3.24 0. 140 1.56 10-4 4.40 10"4

TABLE X: Dilatometry, First run on sample DAI-24

Calibration Wheel 0. 2394 cms/tooth V = 0. 3700

Sample: DA1-24 Cap. 1. IS * I0- cc/cm

Length (mm) X AV(cm) AV(cc) AV/..._ cc/cc

49 1.00 0 0 0

53.8 1.10 0 0 0

58.6 1.19 0.005 5.70 10- 6  1.54 1 I0"

63.4 1.29 0.010 1.1is I0"5 3.12 1 0"5

68.2 1. 39 0.015 1.72 10-5 4.65 . 10-5

72.94 1.49 0.015 1.72 10"5 4.65 10- 5

77.74 1.59 0.025 2. 86 10" 7.75 ' 10-5

82.54 1.69 0.045 5. 15 10-5 1. 37 10-4

_ _ _ _ _ _ _ _ [ -.-
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Length (mm) b £V(cm) ,SV(cc) _./'vI cc/cc

87. 34 1.79 0.065 7.45 I0-5 Z.02 '0"4

91.14 1.89 0. 075 8.60 10"5 2. 32 10-4

96.88 1.98 0.080 9.20 10-5 2. 48 10. 4

TABLE XI: Dilatometry, Second run on sample DAl-24

Length (mm) )> AV(cm) 6 V(cc) LtV/V cc/cc

72.94 1.49 0.030 3.45 10"5 9. 30 10-5

96.88 1.98 0.060 6.90 10-5 1.89 10- 4

120.82 2.46 0.060 6.90 10-5 1.89 10

144.76 2.96 0.030 3.45 10"5 9.30 I0"5

154. 33 3.24 0.040 - 4.60 10- 1.22 10

TABLE XII: Dilatometry, First run on sample DAI-25

Length (mm) 6 AV(cm) AV(cc) AV/V cc/cc

49 1.00 0 0 0

-5
53.8 1.10 0.010 1. 15 10 3.1 10-5

58.6 1.19 0.020 2.30 1"0 6.2 10-5

63.4 1.29 0.030 3.45 10"5 8.8 10-5

68.2 1.39 0.030 3.45 10"5 8. 8 10-5

72.9 1.49 0.030 3.45 10-5 9.8 10"5

77.7 1.59 0.030 3.45 10-5 8. 8 10-5
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Length (mm) x L V(cm) AV (cc) - V/Vo cc/cc

82.5 1.69 0.030 3.45 * 10-5 8.8 * 10-5

87. 3 1. 79 0.045 4.80 " I0"5 1. 30 " 10-4

91. 1 1.89 0.040 4. 25 " 0"5 1. 15 10-4

96.8 1.98 0.040 4.25 10' 5 1.15. 104

TABLE XIII: Dilatometry, Second run on sample DAI -25

/
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IL DISCUSSION

One of the most important aspects of this study of dilation was the

swelling of natural rubber in different liquids. Water itself is definately

a swelling agent, up to 3% weight change is recorded after an immersion
of several days. h1' this weight uptake were translated entirely into a

volume change, this would correspond to a AV/V% of 3 • 10-2 which is two
orders of magnitude above the expect . change from dilation due to the

isotropic tension.

Thus one of the first consideration@ is to question any results in the

literature that give the dilation of natural rubber from experiments carried

out in water, almost the only kind of experiment used to date. Holt and

McPherson r161 and Wolstenholme [35]both measured the dilation in water,

although the formecr do mention that for longer periods of immersion they

* used mercury. However we found that water uptake was certainly not

negligible at even small immersion times. For the results obtained by

hydrostatic weightings r36, 381, one should ask oneself how much water is

taken up immediately by capillary action iatto the rubber voids. A fraction

of a percent would be still an order of magnitude above the expected mechan-

ical dilation. According to Grove's results [531; water is not automatically

eliminated as dilatometric, fluid because much of the Imbibed liquid does not

seem to change the overall volume. But even if the overall volume did not

change during weight pick-up of liquid, the liquid fmbibed must respond to

the stretching in several ways:

1. by flowing out of the larger voids and pores, it will make the

dilatometric volume of the rubber upor stretching seem larger.

2. parallel to this effect, the liquid that has gone into the molecular

interstices will only reappear in the bulk of the liquid very slowly,

and hence restricts the motion of the rubber chains and prevent

accomodation to the new length. This will tend to decrease the Poisson

ratio and make a contribution to the apparent large volume increase upon

stretching.

Lowering the activity coefficient of the water by addition of highly soluble

salts, we found, as mentioned, gave negligibie swelling after several days of
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testing 4. Since K or Na salts were not so effective, one has to deduce that

the Li with its stronger capacity to bind water molecules quite strongly,
inhibits water swelling of the rubber network at concentrations where there

is no free water Left r541 . This in itself was a very interesting result.

Before examining and discussing the experimental data, it might be

of interest to analyze on the molecular level why an isotropkc body expands upon I
simple tension. In the case of liquids, which relative to the applied stresses

are incompressible, all forces immediately cause motion. The packing in a

liquid is loose enough (the order is short range) so that the molecules need
not penetrate over a geometrical barrier, as there are enough voids to take

up any motion and stress relaxation is practically instantaneous. In the case

of an elastic solid or a glass, the molecules require more than fluctuation

space to move past surrounding denser clusters. During recoverable

aeformation the molecules need not move from one t: ough to another, but

merely move up the energy quadient and then fallback into the old position on

removal of the stress. If the molecules really moved, we would no longer be
in the elastic region, but irreversible plastic flow would take place. Hence,

as the molecules tend to "rise" on their neighbors, they Increase their inter-

molecular distances and as a result there to a net increase in volume. f urther,

as the moiecuLe is in a potential energy well increasing its distance to some

of its neighbors must increase also its potential energy. But potential energy

is free energy, and hence whenever there is a change in stored energy due to

distortional stress, there must be a dilation in volume. An interesting

corollary is that, when in the case of a swollen networx the molecules can

move by the way of the voids present in the swelling liquid there can be an

elastic storage upon stretching for which one would not expect any change In

volume. In general, though, one can say that any isotropic elastic body will

undergo dilation due to the negative isotropic stress component in tensile

deformation.

The four runs that were carried out (see Tables X, XI, XII and XIII

also Figures 61 and 62) even if not quantitatively ,'liable, show unequivocally

that natural rubber exhibits indeed volume dilation upon small elongations.
At the higher elongations, the supposedly identical samples begin to differ.

We are not in a position at this time to explain the differences, and more worK
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would have to be carried out with a now dilatometer. A possible explan-

ation might be that the motion of the wires enhance osmotic leakage

or promotes gas na.deatim following corrosion. As for the observed volume

changes, we conclude that the volume expansion io very small, corresponding

to a Poisson ratio of 0. 499. That is, rubber does indeed behave at first

almost like a true liquid, and volume expansion occurs I cally and near cross

link points. In our weakly cross- linked rubber this must be expected to be

a small disturbance. More tightly vulcanized or partly filled rubbers aught

to exhibit more dilation even Initially.

EventualLy, once the experimental technique is sufficiently reliable, it

is planned to measure, amongst others, the volume effects of stress re-

laxation, the ditational reversibility of the stress-strain cycle, the volume

dilation at low to moderate strains to establish the nature of the Poisson

coefficient of the rubbers, and finally the kinetics and density changes at

higher elongations due to crystallimation . It will be particularily worthwhile

to study these same parameters in the case of non-crystallizing rubbers.

D
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IV. APPENDIX III

A,. Change in volume upon untaxial teneiOn - Theory

Consider a cylindrical isotropic material. of radius Ro and of length

Lo. The initial volume is given by:

V : ff R 2
0 Lo (App. 11:1)

at a given tength L,

V : R 2 L (App. I:L2)

where R and L are the radius and the length respectively at any given time.

LV V - Vo (App. 11:3)

where V W (Ro 4 6-R) (LO 4. AL) (App. 11:4)

and Vo -yrR 2  L2

0 o
thus 6V r f(R° 04 /R)2 (L. L A L) -R L 11WRZL°

Vo
(App. 

11: 5)

I Poisson ratio defined in - strains

We wili define the X Poisson Ratio, as being:

VI - AR/ Ro (App. 11:6)

AL/Lo
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and if furthermore

, AL/L0 (App. II:7)

then AR/R - v (App. 11:8)

App. II, Equation (5) can be written as:

A V/V - (1 4- ARR/R 0 )2 (1 -- L/Lo) -4

( .L 2t ' R/R° 4- (&R/Ro) 11 --4 AL/L ) 1

1 -4 6L/Lo -- 2 AR/Ro .AL/L 4--(AR/R )2 -

(AR/Ro) 2  AL/Lo - 1 ,- 2 0

c - 2c Y ' - -V -' e - C3 it (App. 11:9)

App. II, Equation (9) can be written in two forms:

AVVIV (1- 2 •-- 4 (•.• 2 4. e 3 v 2  (App. 11:10)

22SAV/V0  -A -/ ( -(2 . 2 () 4- V2 (€ 4 ( 3 (App. 11:10')

These equations (10, 10') are exact expressions givdng the change of volume

of an isotropic sample deformed under simple 'tension.

a. Came of an incompressible bod,

If AV 0, then the body by definition is incompressible. Setting AV

equal to zero in App. II: Equation (10').

V2  ( - 1)- 2 1] (App. II:11)

solving for i

V,2 12 2 1/Z

V 1 .- (((4It1) R 2 4- 1)2 l . (

f (if4 1) 2 (tc 1)e /
1/2(21( 4- 1)
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dividing both the numerator and denominator by c,

V 4-/- (C-Al)I -

4(( -. 1) (App. 11: 12)

V = F It( C/ .4. 1) 1 (App. II:12')
(

for q" 0
ut _. - t -/ Il1/2

V 1 0 (App. 1:13)

-i 1 . 0 (App. I1: 13)
4o

7-or t-0

Vi • 1 -/- (0O)1/0 which is indeterminate
0

Applying Hospital's rule,

-3/2

(162 - •(App. I:13") 1

-3/2
0(i)C 4.1) 1 4 (App. 11:1311')

Thus for ( approaching to zero, the negative root approiches the value for
Vof 0.5. Hence in analogy with the classical development of AV/V : CO -20•,

0

and where for a material of V : 0. 5, there it no change In volume whatever

the elongation, we choose the negative root of App. II: Equation (12').

~1/2
i r i - (-4- 1) (App. U:14)
C
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What are the values of the tangents to this function?
-3/2 -1/ 2

V = r I (c-- 1) r- 1- - 1) C (2
-3/2

(C 1) .. _1 - 04 0 1/.- )" (App. 11:IS)
(

Applying Hospital's rule

Ati : 0
-3/2 -5/2 -3/2

(v t) (, 4-1) 4-k r(3_) (it -4- 1) -R 4. 1)
(- 0 2

-5/2 -S/2 -7/2
2-3((-/. 1) -4 ((41) 4 15 q4 1) .

3 ((41. )

2

-3 -3 4 3
2 2 2

2

(t.R') -- 3

C: 0 4 (App. 11: 16)

at ( :a0 ,(V'i) 0 (App. 11:17)

Thus one conclusion is immediate, and that is that at very small strains.

the value of the incompressible Poisson ratio approaches the predicted value

of 0. 5. but along a non zero tangent. At small strains, the value of Poisson's

ratio io not 0. 5 for incompressible bodies.
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Ces. of a compressible body

Rearranging App. II: Equation (10'),

V W(2(-4 - 21j C( -/ 1) 4- AV/Vo 0 (App. 11:18)

Ir -"r..aogy with the compressible body, we sh,-ill choose the negative root,

z 112
v ( -- l -1) 2)- (r-4. 2) ( -C V/V 0)

2 4 - 1)

1/2
V c (--A 1) - ( ((-/41) (r-A 1 -q-/- AVIvo))

( ( (-A 1)

1/2
1 I - (V/Vo( -A 1) J (App. 11:19)
(

1 rorn App. II: Equation (19) it would be possible to solve for one of the thref

variabbs knowing the two others. To enable one to solve this equ.ation easily

we will use the reduced variables.

Let us call V/Vo : d (dilation)

(-1) d : S

1/2
then tV: 1 -

d -. S

1/2
1 - i l ) (App. I1:20)

1-. S/d

x S/d (App. 11M21)

y (V 11App. II:Z2)

then y - 1 -1 x) (App. 11:23)
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A two-dimensional plot of y f(x) can be drawn up, and the Poisson ratio

of a compressibie body as a function of the change in volume (d) and a function

of the elongation (f) can be calculated.

Z. Poisson ratio defined in natural strains

If the Poisson ratio, - in (0 4 AR/Ra.) (App. M1:24)
In (1 4 6L/L 0 )

then V - Y(R -6 .R) (L 4- AL)
Vo ff"Roz Lo

: 1 .46 R ) 2 ( 1 -4. 6L)

ao L 0 (App. 11:25)

Ro Lo
and if(_N__ Ap.H 4

1-2 V
then V ( .4- 6L ) N (App. II:26)

V L
o 0

and A V - V - 1- (App. 11:27)
V V

o 0

Contrary to the expression for V//V obtai.ned by using the Poisson ratio
0

as defined in X strains, this expression for /V/Vo is always zero for a

Poisson ratio of 0. 5.

Thus an isotropic incompressible body has a Poisson ratio as defined by

natural strains, always equal to 0. 5 and this value of V' is independent of
N

the elongation (.
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B. Plots of Poisson ratios as a function of dilation and elongation

From App. U: Equation (19) it is possible to calculate the Poisson ratio

for any given dilation and any given elongation. This equation has been set

up on the computer, and Figures (65, 66, 67) show the Poisson ratio for

various ranges of elongation and dilation .

Sigure (67) shows the figures for both large elongations and large dilations

Here it Is quite apparent that in the case of Poisson ratio defined from X strains,

a material of such a constant equal to 0. 5, would show a strong contraction

in volume upon elongation. Also at f = 2007o, one would actually have no

volume left at aill F'igure (66) shows intermediate Poisson ratio as defined

by X strains as a function of small values of elongation and dilation. There

it can be clearly seen that the tangent at the origin (c : 0) for v i " 0.5 is

not equal to zero. Thus even at infinitesimal strains, for a Poisson ratio as

defined here equal to 0. 5, the dilation (actually a contraction) is finite.

Figures (68, 69) show the Poisson ratio, as defined for various natural

strains, as a function of elongation and dilation. In this case, negative values

of dilation (or contraction of volume) are not possible for ViN < 0. S. Also

if the material is truly incompresbible, then the Poisson ratio is 0. 5 for all

elongations.



111- 187

CONCLUSION

".. Of the three different experiments carried out on $atural.Rubber, the

force versus temperature measurement have verified that the decay of stress

in stretched elastomers is approximately linear with logarithm of time for

a considerable period, as was found by Kraus uznd Molaugemba-T-t63-r-'Je

[Z7 *, and.Smith [••I1. A viscoelastic mechanism for this decay according to

a spectrum of Maxwell terms, can be ruled out as the basis for this form of

relaxation because of the nature of the time dependence. An a further difficulty

small local defects leading to crack propa3ation by stress concentration and

crystallization of the sample complicate this relatively simple but unexplained

form of relaxation. Thus, there is a natural difficulty in the way of de-

termining when the criterion of equilibrium has been adequately fulfilled. In

our experiments, the sample was considered fully relaxed when the increment

of relaxation over the total span of testing was lees than one percent.' her

authors simply indicate without further elucidation that they waited for the f
decay of- stresse* to ha "negligible".

Over the ranges of temperature (30 C - 600 C) and elongations X (1. 00

- 3. 00) studied, the force temperature curves were reproducible, re-

versible and linear. A series of computer programs were written in order

to correct the raw data for the thermal expansion of the rubber. (Before

correction, the slope of the force temperature data is negative at low values

of strain, and becomes positive at higher values; this phenomena is known as

the thermo-elastic inversion, first pointed out by Meyer and Ferri [55] and

corrected for by Anthony, Caston and Guth [46] . This thermo-elastic

inversion simply shows that at the lower elongations the thermal expansion

of the rubber by increasing its length at constant stress, reduces the tension

at constant length. In other words at very low strains the reduction of tenoalon

by thermal expansion exceeds the increase of tension with temperature to be

expected from the kinetic theory of elasticity. The thermo-elastic inversion

point is the strain at which these two effects balance exactly. The thermo-

elastic inversion influences also of course, the adiabatic temperature change

in elastomers, which if (a/lT)p, L remains uncorrected will be calculated to

have a negative sign at very low strains (Fig. 23). Unfortunately, our ex-

periments were not sufficiently accurate at these low strains to observe this

inversion.
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The Mooney-Rivlin parametric equation as was stressed in the Intro-

ductioni has no molecular basis, and really describes a purely hypothetical

body. It was also shown that, even though several authors r22, 50] have

done extensive work on the dependency of both, CZ of the Mooney-Rivlin

equation and of fe/f (the internal energy contribution to the total retractive
force ) upon the elongations at low values of strain, Roe and Krigbaum £18]
feel that precise data gathered from the low strain values would cast addi-

tional light upon the validity of the Gaussian approximation, which should be
valid as long as the chains are only slightly stretched. Unfortunately, the

behavior of the samples at these low strains might well suffer from a lack

of well defined response to a stress. At moderate elongations the network

is deformed as a whole, and we are truly seeing average properties taken
over a large population, but at very small strains, many fewer chains, or

small sections of the network, may participate in the deformation, and the
averages become accidental functions of minor disturbances.

Moreover as shown in the Appendices, it is mathematically obvious that
at very low strains the errors of the measurements, be they on the Mooney-
Rivlin strain ( X - X 2) or the internal energy contribution ( \ 3 _ 1)-1 , must

become very large i. e. a small uncertainty on X is greatly magnified as X
* approaches unity. The available data at low strains, particularily that ob-

tained from Anthony, Caston and Guth .461 show in all cases that, if the

actual stress is plotted as a function of strain, a straight line is obtained that
does not pass through the origin. This we have attributed to a type of super-

structure, that first must be broken up (requiring energy to do so), before
the material exhibits truly rubber elastic response. This fact would tend to

negate Van der Hoff's [221 ascertion that for very low values of strain, the

C2 term of the Mooney-Rivlin equation is nil. Van der Hoff defines his rest

length (critical because of the sensitivity of both C2 and fe/f to its value at

low strains ) by assuming Hookeian behavior and placing the origin into the

straight extension of the line of his points. We do not dispute a linear type of

response at moderate strains (from X z 12 to 1.3) but we do question that this

linearity can be presumed to extend into the region of still lower strains.

With the aid of a weighting factor it was possible to calculate the values

of the Mooney-Rivlin parameters (ZCI and 2C2 ) for the combined data of the
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two samples. CI depends linearly on T as predicted by the simple kinetic

theory, while C? was found to be relatively insensitive to changes in T.

Again, it is difficult to read the data pertaining to C 2 . In our analysis, all

data at values of X smaller than 1. 25 were discarded as being error prone.

It can similarily be deduced that fe/f must depend strongly upon the
rest length at low elongations and that, in fact, Shen's data tend to show a

rapidly increasing value of C2 in agreement with others in the literature

and in contrast to Van der Hoff's data. Small changes in rest length indeed

changes the aspect of fe/f, drastically from an increasing contribution of

internal energy at the low strains, to a decreasing one, depending on the

chosen value of the rest length. One might sum up the outcome of this study

with respect to CI and C 2 into the foll owing way with reference to the idealized

diagram where the stress is dir•ectly propurtional to the Mooney-Rivlin strain
(, - 1/0 2 ) . Referring to this linear extension graph the Gaussian line rep-

resents the final approximation with all of its well known oversimplifying

assumptions. The Mooney-Rivlin curve, cutting off after the second term, is

a good second order approximation. According to this investigation C 2 is

not zero, probably not even in the limit of Xo. 1. Thus linear back extrapolation
to the origin are not justified, though an experimental verification is extremely

difficult because of the indetermination of the magnitude of deformation (zero

length) at small elongations and possibly also because of the fluctuations of
structures in undeformed rubbers themselves, and because as soon as these

fluctuations became less important on account of larger deformations, the

rubber has become anisotropic and ordinary continuum theories can no longer

apply. To judge, by the thermal inversion point, this may become true at
much smaller elongations than hitherto ahought. The first deviations from

Gaussian behavior, as encompassed by the Mooney-Rivlin theory and indirectly

by experiment, are, similar to many other cases, probably best understood

in terms of Van der Waals type attraction or repulsion forces, and here also

as anisotropic volume terms. There may be also, but not decisively con-

tributions from non-equilibrium states. While none of these suggestions is

entirely new, it is believed that as matter of their emphasis, confirmation of
certain previous information, and interelation of these and previous findings,

the present is a new aspect of rubberlike behavior at low and moderate

elongations.
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The results obtained from di'atometry are encouragitig. Preliminary

tests show that the samples do dilate upon elongation, and that the dilation is

of the expected magnitude, of 10"4 cc/cc. The Poisson ratio, defined in terms
of natural strains, turns out to be approximately 0. 499 which is very close to

showing that our rubber is incompressible. Experimentally the difficutties

so far could not yet be overcome. The water bath in which the di~atometer is
immersed must be controlied to better than 0. 0010 C over relatively Long

periods of time. Secondly the dilatometer must be leakproof better than one

part in a million and stay quite uncorroded. Thirdly, the swelling of the

rubber upon immersion of the sample must be less than 1 part in 1000 and

change little with temperature or state of strain. We could fulfill the first,

and practically also the third condition, but failed so far in the second.

Before investigating the thermal effects of fast stretc.hing, it was necessary

to derive a linearized output of the Thermistor as the fourth leg of a Wheat-
stone Bridge as a function of temperature. The reduced open-circuit output

potential was found to be an inflected function of temperature; knowing the

resistance and the temperature coefficient of the resistance at a specified

point allowed one to choose the position of the Thermistor Function at inflexion.

The slope of the tangent as well as the value of the inflection point were
accessible to theroretical calculations.

The use of a thermistor bead as a temperature measuring device presents

many advantages (its size, its sensitivity, and its fast response to thermal

changes). Unfortutiately, in this particular case it is also pressure sensitive

and this effect must be corrected for in the total response. Since the pressure

response appears to be much slower than the thermal response. the original

peak may be taken to be wholly due to thermal changes in the rubber. With
the help of the temperature changes during elongation and retraction thus

measured and of the previously determined force-temperature curves, it was

possible to calculate the specific heats of the stretched elastomer, independ-

ent of temperature and at v,,rious stages of strain. It was found that the

specific heat is a decreasing function with increasing elongation. A result not

unexpected in view of the effective aligning of chains and therefore loss of

entropy. Compared with the literature these results are found to agree quite

closely with the few available other data.
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Stress-strain data from isothermal stepwise :stretching experiments are

usually difficult to evaluate because it is so hard to ascertain whether one

deals truly with equilibrium data. Therefore, not withstanding the slow

relaxation encountered by us and other authors during (b f/ B T)_ measure-

ments, stress-strain relaxations derived from force -temperature data should

in general be closer to mechanical e quilibrium, especially when the data have

been derived after some temperature cycling at constant strain. This should

be true for the data on which we based the previous discussion of C2 values.

In contrast to this, the "adiabatic" stress-strain data should be extensively

of non-equilibrium nature. The rapidly relaxing stress peak must then be due

to the presence of relaxation mechanisms which are slower than our fast-

stretching experiments. While the data are too few to allow any other con-

clusions, the principle, if established, should offer one important approach

to the so elusive problem of chain entanglement . In a slighty different way,

the force tracings during retraction can throw light on the mechanism of

internal viscosity and, thermal extension and the re-partition of energetic

degrees of freedom.

Finally some suggestions for further work in the investigation of Rubber-
like elasticity may he permissible. The nature of C2 of the Mooney-Rivlin

equation has been puzzling for a long time. It would be valuable to study the

internal energy contribution to C and to the total retractive force by employing

systematically a number of well defined elastomers of various different types.

To learn more of the effect of conformational changes as related to bond angles

and rotational energics upon the sign and magnitude of f./f would be of major

interest. The same is true for extensive work in dilatometry and further

studies of adiabatic stretching. The experimental system developed here

would appear to have many advantages over others. For adiabatic work,

since no direct measurements of specific heat as a function of strain have

been reported, and it would be most worthwhile to compare the values of Cp, L

obtained from the measurement of force temperature and elongation curves

with those values obtained directly from calorimetry.
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